REFLEXÕES SOBRE EFICIÊNCIA CONCORRENCEIAL EM INDÚSTRIAS DE REDE

RENO MARTINS

Brasília, maio de 2011
REFLEXÕES SOBRE EFICIÊNCIA CONCORRENÇIAL EM INDÚSTRIAS DE REDE

RENO MARTINS

Dissertação apresentada ao Corpo Docente do Mestrado de Economia da Universidade Federal do Espírito Santo, como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências Econômicas.

Orientador: Profª Dr. Alain Herscovici

Brasília, maio de 2011
REFLEXÕES SOBRE EFICIÊNCIA CONCORRENcial EM INDÚSTRIAS DE REDE

RENO MARTINS

Banca Examinadora

Profº Dr. Alain Herscovici (UFES)

Profº Dr. Robson Antonio Grassi (UFES)

Profº Dr. Marcos Adolfo Ribeiro Ferrari (CORECON/ES)

Brasília, maio de 2011
AGRADECIMENTOS

Pela realização deste trabalho, agradeço plenamente a Deus em sua santidade, especialmente nas seguintes pessoas: professor Alain Herscovici, pela paciência e preocupação com que dirigiu a orientação até o seu formato final; professores Robson Grassi e Ednilson Felipe, pelas importantes observações que contribuíram para definição do foco do desenvolvimento; amigos Arnaldo Brandão e Juliana Moura, pela valorosa companhia e auxílio crítico; integrantes do ME/UFES, pela pronta ajuda sempre que necessária; sociedade brasileira, que mediante sacrifícios financiou grande parte de meus estudos; meus pais, irmãos, familiares e demais amigos, principalmente Kleyca e Mariana, amadas esposa e filha, sem as quais essa realização não seria possível.
RESUMO

Indústrias de rede são arranjos estruturais encontrados em setores com especificidades diversas que compartilham um conjunto de características próprias. O trabalho demonstra algumas das maneiras como esses arranjos afetam o comportamento de modelos concorrenciais teoricamente capazes de promover eficiência econômica no sentido de Pareto, apontando a necessidade de formulação de um outro critério para realizar avaliações concretas de eficiência nessas estruturas. A abordagem analisa aspectos relativos ao efeito dos custos de transferência e das externalidades de rede sobre o comportamento dos agentes e o funcionamento de alguns modelos concorrenciais, destacando os elementos interconexão e regras de remuneração pelo uso das redes. As reflexões auxiliam na compreensão da dinâmica particular das indústrias de rede e podem ter utilidade no desenvolvimento de políticas regulatórias envolvendo essas estruturas.
ABSTRACT

Network industries are structural arrangements found in sectors with different specificities that share a set of characteristics. The paper demonstrates some of the ways these arrangements affect the behavior of competitive models theoretically capable of promoting economic Pareto-efficiency, pointing to the need to formulate another criterion for concrete assessments of efficiency in these structures. The approach is focused on the effect of switching costs and network externalities on the agents' behavior and operation of some competitive models, highlighting the interconnection elements and networks remuneration rules. The reflections help to understand the particular dynamics of network industries and can be useful in the development of regulatory policies involving these structures.
1. INTRODUÇÃO

O presente trabalho pretende realizar uma abordagem teórica cujo objetivo é destacar algumas das maneiras como, devido às suas características intrínsecas, as indústrias de rede atetam o comportamento de modelos concorrenciais teoricamente capazes de promover eficiência econômica. Ele pretende, mais especificamente, analisar desdobramentos relativos ao efeito das externalidades de demanda e dos custos de transferência sobre o comportamento dos agentes e o funcionamento de determinados modelos concorrenciais capazes de promover eficiência econômica no sentido de Pareto, apontando a necessidade de um outro critério para realizar avaliações concretas de eficiência em mercados com essas estruturas. Entendemos que tais contribuições teóricas ajudam na compreensão das indústrias de rede e podem ter utilidade nas reflexões sobre políticas regulatórias envolvendo essas estruturas, o que deve ser demonstrado no decorrer da exposição.

A expressão “indústrias de rede” designa arranjos estruturais que compartilham um conjunto de características (SHY, 2001). Diversos modelos organizacionais empíricos foram adotados para analisar essas indústrias, que evoluíram conforme os resultados e problemas que foram apresentando (DIAS & RODRIGUES, 1997). As indústrias de rede abrangem setores com especificidades diversas, tais como telecomunicações, ferrovias, fornecimento de gás e energia elétrica, sendo necessário algum tipo de embasamento que permita refletir sobre a importante questão da possibilidade de ocorrerem efeitos indesejados ou contraproducentes da ação reguladora (FARACO & COUTINHO, 2007). Esse embasamento depende necessariamente da capacidade do instrumental teórico disponível compreender sua dinâmica particular. Podem ser encontrados trabalhos teóricos que auxiliam nessa compreensão, tratando desde os efeitos das externalidades de demanda no desenvolvimento das redes (ROHLFS, 1974) até as possibilidades estratégicas de internalização pelos agentes em ambientes concorrenciais (HERSCOVICI, 2008a). Nossa proposta visa proporcionar uma contribuição por meio da análise de modelos construídos com base numa estrutura lógica matemática.

Um modelo é uma aproximação. Uma versão simplificada da realidade que permite analisar fenômenos mais complexos isolando elementos considerados mais relevantes para o estudo desenvolvido. A adoção de modelos implica a assunção de premissas cuja validade está passível a críticas e questionamentos. Ao adotarmos o instrumental que será
apresentado, o fazemos por considerá-lo adequado e suficiente para alcançar nossos objetivos pretendidos. Buscamos, essencialmente, preservar as ideias de simplicidade, consistência e capacidade explicativa das formulações (FRIEDMAN, 1953), assumindo a relevância de eventuais críticas epistemológicas.

Tradicionalmente, a eficiência econômica é expressa pelo conceito de eficiência de Pareto, definida como a situação na qual não há realocação viável dos bens capaz de fazer com que todos os consumidores fiquem ao menos tão bem quanto estão e pelo menos um deles fique estritamente melhor (VARIAN, 1999). Conforme demonstrado pelos teoremas básicos do bem-estar social, sob certas condições restritivas, situações de mercado capazes de promover um estado de equilíbrio geral também seriam capazes de produzir a máxima eficiência econômica (ARROW, 1951; DEBREU, 1951).

Vários modelos concorrenciais comportam a possibilidade teórica de serem estruturas ideais de concorrência, ou seja, estruturas capazes de promover o estado de equilíbrio geral. Por esse motivo, o fomento da concorrência como princípio de orientação dos mercados é uma questão sempre presente nas reflexões sobre regulação econômica. No centro da discussão, encontra-se a assertiva de que mercados mais competitivos imporiam custos sociais menores que mercados menos competitivos. Os esforços de regulação consistem em, sempre que possível, buscar fazer mercados reais se comportarem como estruturas ideais de concorrência, ou serem capazes de gerar resultados semelhantes aos de estruturas ideais de concorrência. Usamos como referência inicial os modelos de concorrência perfeita, oligopólio de Bertrand e mercados contestáveis, uma vez que se assume que os mesmos seriam teoricamente capazes de promover o alcance da situação desejável do ótimo de Pareto. Na sequência, apontamos as dificuldades em se aplicar esses modelos para indústrias de redes e a necessidade de ser elaborado outro critério para realizar avaliações concretas de eficiência em mercados com essa natureza.

O trabalho está organizado em cinco partes, sendo que a primeira delas consiste nesta Introdução. A segunda parte, intitulada Eficiência Econômica e Modelos Concorrenciais, apresentará conceitos de eficiência econômica, descrevendo mais detalhadamente o conceito de eficiência de Pareto, que servirá como ponto de partida para nossas reflexões. Nela também serão descritos formalmente os modelos de concorrência perfeita, oligopólio de Bertrand e mercados contestáveis numa perspectiva voltada para o nosso interesse, na qual a guerra de preços é identificada como uma de suas características inerentes.

Em *Alguns Aspectos de Concorrência em Redes*, quarta parte, executamos um maior aprofundamento na questão do efeito da interconexão nas externalidades de demanda, introduzindo a remuneração pelo uso das redes no instrumental inicialmente desenvolvido e investigando os desdobramentos que algumas mudanças de regras nesse parâmetro podem acarretar aos resultados esperados. Também é analisado o efeito que as assimetrias relacionadas aos custos de transferência acarretam à eficiência e a forma como alteram a estrutura concorrencial, indispondo a aplicação do conceito de eficiência de Pareto e equilíbrio geral em análises concretas dessas indústrias.

Na quinta e última parte, *Aplicações e Limites*, a guisa de conclusão, realizamos breves reflexões sobre a aplicabilidade do material apresentado, explanando sobre os limites das reflexões realizadas, introduzindo a questão das redes envolvendo bens intangíveis, apontando a necessidade da elaboração de um critério diferente do de Pareto para avaliações concretas de eficiência em mercados com essas estruturas e propondo caminhos para futuras pesquisas.
2. EFICIÊNCIA ECONÔMICA E MODELOS CONCORRENCIAIS

Na análise econômica tradicional, podem ser elencados três conceitos formais de eficiência: eficiência produtiva, eficiência distributiva e eficiência alocativa.¹ A eficiência produtiva possui caráter eminentemente técnico, consistindo na utilização com máximo rendimento da planta produtiva instalada e sua respectiva tecnologia. Em termos econômicos convencionais, equivale à operação sobre uma dada função de produção tendo em vista minimizar os custos (POSSAS; PONDE; FAGUNDES, 1996). Por eficiência distributiva entende-se a eliminação de lucros extraordinários. Norma de equilíbrio dos mercados desde os economistas clássicos, a ideia considera disfuncional a persistência de preços acima dos custos médios e, portanto, de lucros acima dos considerados “normais”, ainda que esse conceito seja controverso (POSSAS; PONDE; FAGUNDES, 1996).

O conceito de eficiência alocativa é estritamente mais usado pelos economistas. Ele evoca a situação onde ocorre o maior volume de trocas, havendo a utilização mais adequada dos recursos envolvidos. A eficiência alocativa não se confunde com o conceito de eficiência distributiva, uma vez que não apresenta preocupação quanto ao volume ou destino dos ganhos produzidos. Tradicionalmente, considera-se ela como tendo relação direta com o conceito de eficiência de Pareto (POSSAS; PONDE; FAGUNDES, 1996). Com efeito, um estado eficiente de Pareto ocorre quando não há realocação viável dos bens capaz de fazer com que todos os consumidores fiquem ao menos tão bem e pelo menos um deles fique estritamente melhor (VARIAN, 1999).

Sob alguns critérios restritivos, pode ser demonstrada uma relação biunívoca entre alocações Pareto-eficientes e o equilíbrio geral competitivo. As primeiras formulações nesse sentido ocorreram nas décadas de 1930 e 1940, com Bergson, Samuelson, Hicks, Lerner, Kaldor e Littl. Entretanto, foi apenas na década de 1950 que Arrow e Debreu demonstram os chamados dois teoremas básicos do bem-estar (GANEN, 1996). O primeiro teorema afirma que um estado realizável de equilíbrio competitivo constitui um equilíbrio ótimo de Pareto. O segundo teorema apresenta a recíproca do primeiro, afirmando que, desde que as preferências dos consumidores se comportem de maneira convexa, qualquer alocação eficiente de Pareto pode ser sustentada através de um equilíbrio competitivo (ARROW, 1951; DEBREU, 1951). A ideia de que o equilíbrio que gera eficiência pode ser alcançado através

¹ Por fugir do escopo teórico proposto para este trabalho, não trataremos a questão da eficiência seletiva, levantada num contexto de análise evolucionária. Ver Possas, Ponde e Fagundes (1996).
de uma concorrência por preços servirá como parâmetro inicial para nossas análises, como será desenvolvido mais adiante.

Discussões sobre justiça e equidade distributiva já levantam questionamentos sobre a adequabilidade do critério de Pareto. Essa abordagem, que envolve o conceito de inveja (*envy free*), conclui que não bastaria uma economia ser eficiente. O resultado de sua alocação também deveria ser considerado justo por seus participantes, caso contrário não seria sustentado em termos políticos (Balbinotto Neto, 2001). Alguns autores defendem que caso a dotação inicial dos agentes seja simétrica, um mecanismo de mercado proporcionará uma alocação final justa, o que não seria garantido com mecanismos arbitrários (Variance, 1999). Assim, em termos de justiça distributiva, o critério de Pareto corresponde a um processo de maximização, para uma distribuição de renda determinada exogenamente.

Um outro critério de eficiência econômica foi desenvolvido pelos economistas Nicholas Kaldor e John Hicks, baseado no princípio de maximização da riqueza (Edward, 2001). O critério de eficiência Kaldor-Hicks, ou Eficiência de Pareto Melhorada, é mais flexível que o original de Pareto, permitindo mudanças para situações onde existam ganhadores e perdedores, desde que o ganho dos que vencem exceda o prejuízo dos que perdem (Tibor, 1941). Uma exposição sucinta é reproduzida a seguir.

De acordo com essa concepção, uma alocação será Kaldor-Hicks-eficiente (ou eficiente no sentido de maximizar a riqueza), caso os indivíduos que dela se beneficiem experimentem benefícios que excedam as perdas de quaisquer outros indivíduos. Dessa forma, aqueles que se prejudicam podem ser potencialmente compensados pelos que se beneficiam com a vantagem de que, ao final, haverá um ganho líquido. É relevante notar que, de acordo com o teorema de Kaldor-Hicks, a compensação dos prejudicados não é necessariamente devida – caso contrário, voltar-se-ia para a situação de ótimo de Pareto. Assim, a diferença principal entre o sistema paretiano e o assim chamado teorema de Kaldor-Hicks reside no fato de que, quanto ao segundo, a compensação pode ser hipotética e não real. O teorema de Kaldor-Hicks possibilita, consequentemente, a avaliação de políticas que produzam perdedores como resultado. Se houver pagamento de compensação aos
O critério de Kaldor-Hicks avalia a eficiência através do aumento da utilidade social, mas ele ignora as implicações em termos de distribuição da renda e de desigualdade. Em determinados estudos, um critério de eficiência também pode ser obtido pela construção de uma função particular de Bem-Estar social (HERSCOVICI, 2010). Essa noção é importante, uma vez que há limites para a aplicação dos critérios tradicionais na análise das indústrias de rede, como deve ser demonstrado nos capítulos subsequentes. Em nossa abordagem, pretendemos trabalhar exclusivamente com a ideia de eficiência econômica, não tendo preocupação direta com os preceitos de justiça e equidade.

Adotaremos como parâmetro inicial o conceito de eficiência de Pareto, proporcionado por configurações competitivas que permitam alcançar um estado de equilíbrio geral. Nos capítulos subsequentes, verificaremos como arranjos de rede afetam essas estruturas, tornando os conceitos de Pareto e de equilíbrio geral inadequados para análises concretas de eficiência nesses mercados. A “concorrência em preços” ou a situação onde os usuários selecionam, entre ofertas equivalentes, aquela de menor preço – é uma característica típica em estruturas teóricas de mercado capazes de alcançar um estado de equilíbrio geral. Essa noção de seleção pelo menor preço servirá como indicador de eficiência em nossas reflexões. Sendo uma característica típica de mercados teóricos eficientes, consideraremos como resultados eficientes em nossas formulações as situações onde a seleção pelo menor preço seja a mais provável, havendo ineficiência quando isso não ocorre.

Para sustentar esse procedimento, descreveremos a seguir três estruturas de mercado capazes de gerar o estado de equilíbrio geral, demonstrando o enquadramento da “concorrência em preços” – ou a situação onde os usuários selecionam, entre ofertas equivalentes, aquela de menor preço – como característica típica dessas estruturas. Isso permite assumi-las como base mínima de abrangência das reflexões que serão realizadas.

2.1. Concorrência perfeita

A concorrência perfeita é o modelo central da escola neoclássica de pensamento econômico, estabelecendo uma série de princípios necessários para que o mercado estabeleça espontaneamente um estado de equilíbrio. O modelo sofreu diversas
críticas de vários autores em virtude de seus pressupostos irrealistas, mas ainda é usado como referencia teórica para várias análises econômicas. No âmbito neoclássico, as quatro condições teóricas necessárias para a existência da concorrência perfeita são (YNTEMA, 1941):

i) Produtos homogêneos;

ii) Plena informação sobre os preços praticados;

iii) Mercado atomizado; e

iv) Perfeita mobilidade dos fatores de produção.

Essas condições, quando simultâneas, garantiriam o direcionamento da produção econômica para um estado de equilíbrio. Sendo os produtos homogêneos, apenas os preços são suficientes para fornecer todas as informações necessárias aos consumidores; com plena informação dos preços praticados e o mercado atomizado, não seria possível evitar que a demanda se desloque para os preços mais baixos; por fim, a livre mobilidade dos fatores de produção asseguraria que a existência de lucros econômicos atrairia novos produtores, aumentando a oferta e reduzindo os preços.

A esses pressupostos, deve ser acrescentada a premissa implícita da existência de custos marginais crescentes, pois caso a firma opere de forma diferente, sua curva de oferta poderia ser negativamente inclinada, tornando inalcançável o equilíbrio (SRAFFA, 1926).

Deve-se entender como produtos homogêneos a existência de ofertas com características uniformes, inclusive quanto à localização e qualidade, de modo que alterações nessas elementos sejam irrelevantes em termos de custo ou utilidade para os usuários. Essa hipótese faz com que somente o preço seja uma variável relevante para a escolha dos agentes, transmitindo todas as informações necessárias. É um pressuposto pouco verossímil, mas destaca a relevância de, sempre que possível, aumentar a capacidade de comparação e avaliação dos agentes como maneira de fomentar a concorrência.

Disponibilizar todas as informações necessárias aos agentes para que realizem suas escolhas entre as alternativas possíveis, sem custos expressivos para isso, também seria
essencial para o funcionamento do mercado. As escolhas mais adequadas garantiriam a melhor seleção entre as firmas, promovendo eficiência.

A existência de muitos compradores e vendedores, por sua vez, faz com que nenhum deles possa exercer, individualmente, influência significativa sobre o preço de mercado estabelecido. Esse pressuposto impossibilita o conluio, obrigando aos ofertantes achatarem suas margens até a extinção dos ganhos econômicos extraordinários.

A perfeita mobilidade dos fatores produtivos consistiria na condição em que trabalho e capital poderiam se retirar ou entrar em algum processo produtivo sem que isso resultasse em perdas econômicas. Essa premissa permite supor que não haveria obstáculos empresariais para explorar oportunidades de lucro, de modo que investidores capazes de identificar a existência de margens poderiam apropriar-se das mesmas sem obstáculos. Alguns autores apontam que o perfeito conhecimento futuro dos preços e custos poderia ser uma alternativa a esta condição, pois a capacidade de previsão alocaria os fatores produtivos de maneira ótima, mesmo sem a perfeita mobilidade (YNTEMA, 1941).

Sob os postulados do modelo de concorrência perfeita, consideremos um mercado com \(n \) firmas, onde todas elas possuem a mesma função de custos. Chamemos \(cmg \) o custo marginal e a demanda total do mercado é dada como uma função do preço \(Q = D(p) \). Cada firma \(i \) pode cobrar um preço \(p_i \) pelo seu produto. Consideramos a restrição \(p_i \geq cmg \) para qualquer firma \(i \), pois \(p_i < cmg \) implicariam em operar com ineficiência, comprometendo a sobrevivência da firma e que a demanda é igualmente distribuída entre as firmas que permanecem no mercado. Sob a ótica do produtor, o modelo de concorrência perfeita pode ser formalizado conforme Tabela 2.1, para as situações enfrentadas por cada uma das firmas presentes no mercado.

<p>| Tabela 2.1 – Jogo de concorrência perfeita, sob a ótica da oferta |
|------------------|------------------|------------------|</p>
<table>
<thead>
<tr>
<th>Estratégia</th>
<th>Opção</th>
<th>Prêmio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p_i > \frac{\sum_{j=1}^{n} p_j}{n-1} - p_i)</td>
<td>(-opt)</td>
</tr>
<tr>
<td>2</td>
<td>(p_i < \frac{\sum_{j=1}^{n} p_j}{n-1} - p_i)</td>
<td>(D(p_i)(p_i - cmg))</td>
</tr>
</tbody>
</table>
Na Estratégia 1, a firma i opta por adotar um preço p_i maior que a média dos demais $n-1$ preços ofertados. Isso escoaria toda a demanda da firma, que migraria para preços mais baixos, anulando as vendas. A firma estaria fora do mercado, perdendo os ganhos de oportunidade opt do investimento. Na Estratégia 2, a firma i opta por adotar um preço p_i menor que a média dos demais $n-1$ preços ofertados. Isso permite a captura de toda a demanda, gerando o prêmio $D(p_i)(p_i - cmg)$, equivalente a todo o mercado. Essa seria a estratégia dominante para todas as empresas, que baixariam seu preço até o limite $p_i = cmg$, de modo que $D(p_i)(p_i - cmg) = 0$. Na Estratégia 3, a firma i opta por adotar um preço p_i igual a média dos demais $n-1$ preços ofertados. O resultado seria a divisão dos ganhos entre as firmas. Na Estratégia 3, caso $p_i > cmg$, outras firmas teriam a Estratégia 2 como estratégia dominante, forçando a queda do preço até $p_i = cmg$.

Uma formalização semelhante, sob a ótica da demanda, nos será útil. Os demandantes do mercado selecionarão o produto que lhes oferecer maior utilidade. Assumindo os pressupostos da concorrência perfeita, a utilidade é mensurada como uma função do preço. Assumindo w_d como a utilidade total do produto ofertado para o demandante d, a função de utilidade U_d do produto de uma empresa i para qualquer demandante d poderia ser dada por:

$$U_d = w_d - p_i \quad (2.1)$$

Outra forma ordinalmente equivalente seria:

$$U_d = \frac{w_d}{p_i} \quad (2.2)$$
Sendo 2.1 e 2.2 funções de utilidade ordinalmente equivalentes, as opções estratégicas para todos os demandantes do modelo podem ser expressas conforme a matriz exposta na Tabela 2.2.

Tabela 2.2 – Jogo de concorrência perfeita, sob a ótica da demanda

<table>
<thead>
<tr>
<th>Estratégia</th>
<th>Situação</th>
<th>Opção</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[p_i < \frac{\sum_{j=1}^{n} p_j}{n-1} - p_i]</td>
<td>Produto da firma i</td>
</tr>
<tr>
<td>2</td>
<td>[p_i > \frac{\sum_{j=1}^{n} p_j}{n-1} - p_i]</td>
<td>Outro produto que não da firma i</td>
</tr>
<tr>
<td>3</td>
<td>[p_i = \frac{\sum_{j=1}^{n} p_j}{n-1} - p_i]</td>
<td>Indiferente entre os produtos</td>
</tr>
</tbody>
</table>

Na Estratégia 1, os demandantes encontram a situação onde a firma \(i \) cobre um preço \(p_i \) menor que a média dos demais \(n-1 \) preços ofertados. Conforme as funções 2.1 ou 2.2, a utilidade \(U_d \) de um demandante \(d \) qualquer é maior para qualquer \(p_i \) mais baixo. Logo, nessa situação, os demandantes optam pelo produto da firma \(i \). Na Estratégia 2, os demandantes encontram a situação onde a firma \(i \) cobre um preço \(p_i \) maior que a média dos demais \(n-1 \) preços ofertados. Conforme as funções 2.1 ou 2.2, a utilidade \(U_d \) de um demandante \(d \) qualquer é menor para qualquer \(p_i \) mais alto. Logo, nessa situação, os demandantes optam pelo produto de outra firma que não seja a firma \(i \). Na situação da Estratégia 3, os demandantes encontram a situação de preços iguais, sendo indiferentes entres as ofertas das firmas.

Assim, no modelo de concorrência perfeita, como conseqüência inevitável das premissas, o preço é o mecanismo pelo qual se realizam os ajustes que direcionam a estrutura para o estado de equilíbrio. A competição por preços, assim, pode ser entendida como um elemento característico desse modelo.
2.2. Oligopólio de Bertrand

O modelo de Bertrand demonstra que, não havendo conluio, é possível chegar a resultados similares aos de concorrência perfeita em mercados não atomizados (BERTRAN, 1883). É um modelo em que as empresas estabelecem seus preços e os consumidores determinam a quantidade que será vendida. Caso não haja restrições de capacidade das firmas, o modelo geraria situação econômica competitiva com lucro econômico zero, porque uma pequena redução de preços seria suficiente para atrair todos os consumidores (BERNI, 2004). Havendo diferenciação nos produtos, no entanto, haverá um excedente a ser dividido pelos competidores (RASMUSEN, 1994).

No modelo de Bertrand, a quantidade de produtos vendida por determinada empresa é função de um parâmetro de demanda constante, afetada negativamente pelo seu próprio preço e positivamente pelo preço de seu concorrente. Neste modelo, onde os concorrentes tomam decisões simultâneas, espera-se que os preços praticados por todos os agentes se movam na mesma direção, para cima ou para baixo. O equilíbrio de Bertrand é, do ponto de vista social, mais eficiente que o equilíbrio em outros modelos de oligopólio, como o de Cournot (SINGH; VIVES, 1984).

O modelo de Bertrand é regulatoriamente menos restritivo que a concorrência perfeita, uma vez que admite equilíbrio em mercados com poucos ofertantes e sem a necessidade de mobilidade dos fatores. Suas restrições para eficiência são:

i) Produtos homogêneos;

ii) Plena informação sobre os preços praticados; e

iii) Capacidade de produção ilimitada das firmas.

Os produtos homogêneos garantem que os usuários serão indiferentes entre as firmas. A plena informação sobre os preços praticados assegura que será feita a melhor escolha. A capacidade de produção ilimitada garante que a firma satisfará a demanda. Caso uma empresa estabeleça um preço abaixo do custo, sofrerá prejuízos, tendo um incentivo a aumentá-lo. Caso uma empresa estabeleça seu preço maior que o custo, abrirá margem para
que os concorrentes cobrem menos, capturando todo o mercado. Considerando firmas com custos semelhantes, o único equilíbrio estável é quando todas vendem com preço igual ao custo marginal, um estado eficiente de Pareto. Como na concorrência perfeita, a existência de custos marginais crescentes seria uma exigência obrigatória, sob pena de tornar o equilíbrio inalcançável (SRAFFA, 1926).

Considere-se um mercado simplificado com duas firmas A e B, que possuem a mesma função de custos. Sendo a demanda total do mercado dada como uma função do preço \(Q = D(p) \), igualmente distribuída entre as firmas do mercado. Sendo \(i \) o índice relativo a A e \(j \) o índice relativo a B, sob a ótica do produtor a equação de demanda individual para cada uma das firmas pode ser formalizada da seguinte maneira (COLOMA, 2009):

\[
D_i(p_i, p_j) = \begin{cases} 0 & \text{se} \, (p_i > p_j) \\ \frac{D(p_i)}{2} & \text{se} \, (p_i = p_j) \\ D(p_i) & \text{se} \, (p_i < p_j) \end{cases}
\]

(2.3)

A mesma formalização pode ser expressa na forma de uma matriz de jogo, como realizado na seção anterior para concorrência perfeita, conforme expresso na Tabela 2.3.

| Tabela 2.3 – Jogo de Bertrand para duas firmas, sob a ótica da oferta |
|-----------------------------|-----------------------------|-----------------------------|
| Estratégia | Opção | Prêmio |
| 1 | \(p_i > p_j \) | \(- opt\) |
| 2 | \(p_i < p_j \) | \(D(p_j)(p_i - cmg) \) |
| 3 | \(p_i = p_j \) | \(\frac{D(p_j)(p_i - cmg)}{2} \) |

Na Estratégia 1, a firma A opta por adotar um preço \(p_i \) maior que o preço \(p_j \) da firma B. Isso escoaria toda a demanda da firma, que migraria para preços mais baixos, anulando as vendas. A firma estaria fora do mercado, perdendo os ganhos de oportunidade \(opt \) do investimento. Na Estratégia 2, a firma A opta por adotar um preço \(p_i \) menor que o preço \(p_j \) da firma B. Isso permite a captura de toda a demanda, gerando o prêmio
Na Estratégia 1, os demandantes encontram a situação onde a firma A cobra um preço \(p_i \) menor que o preço \(p_j \) da firma B. Conforme a função 2.2, a utilidade \(U_d \) de um demandante \(d \) qualquer é maior para qualquer \(p_i \) mais baixo. Logo, nessa situação, os demandantes optam pelo produto da firma A. Na Estratégia 2, os demandantes encontram a situação onde a firma \(i \) cobra um preço \(p_i \) maior que o preço \(p_j \) da firma B. Conforme a função 2.2, a utilidade \(U_d \) de um demandante \(d \) qualquer é menor para qualquer \(p_i \) mais alto. Logo, nessa situação, os demandantes optam pelo produto de outra firma que não seja a firma A. Na situação da Estratégia 3, os demandantes encontram a situação de preços iguais, sendo indiferentes entre os produtos das firmas.

O modelo de oligopólio de Bertrand também traz o preço o mecanismo pelo qual se realizam os ajustes direcionadores para o equilíbrio. Como no modelo de concorrência perfeita, a guerra de preços também pode ser entendida como um elemento característico desse modelo.
2.3. Mercados contestáveis

A teoria dos mercados contestáveis foi apresentada na década de 1980, com a publicação do livro *Contestable Markets and The Theory of Industry Structure* (BAUMOL; PANZAR; WILLIG, 1982). Como o modelo de Bertrand, ela examina condições em que mercados concentrados poderiam apresentar um desempenho semelhante ao de mercados competitivos atomísticos, tanto em relação aos preços quanto aos custos. Seu princípio básico é o conceito de “concorrência potencial” – a ameaça crível de entrada de concorrentes, ainda que essa entrada não se concretize (BAUMOL, 1982).

No modelo dos mercados contestáveis, a estrutura de mercado resulta da interação entre características técnicas da produção, tamanho do mercado e concorrência potencial. Em tese, um mercado em qualquer grau de concentração – inclusive monopólios – poderia ser eficiente no sentido de Pareto, desde que sua estrutura permita que qualquer firma possa participar dele auferindo lucro. Os concorrentes potenciais devem estar aptos para impugnar efetivamente as práticas das firmas já estabelecidas no ramo (ARAÚJO JR, 1985).

Os mercados contestáveis ampliam o conceito de concorrência perfeita, uma vez que todo mercado perfeitamente concorrencial é necessariamente contestável, embora o contrário não ocorra. Um mercado é considerado perfeitamente contestável quando os concorrentes potenciais possuem livre acesso à tecnologia necessária para produção e podem recuperar seus custos de entrada, caso decidam abandonar a indústria. A perfeita contestabilidade está relacionado com liberdade absoluta de entrada e saída das firmas. As condições para um mercado perfeitamente contestável são:

i) Plena informação dos agentes;

ii) Pleno acesso à tecnologia; e

iii) Ausência de barreiras à entrada e à saída;

Em virtude de suas premissas, é possível concluir que em um mercado contestável não existe lucro econômico. Os preços são iguais aos custos marginais e o equilíbrio é Pareto eficiente. Potencialmente, firmas fora do mercado podem instalar-se
sempre que forem verificados lucros extraordinários, retirando-se sem custos quando esses lucros cessarem (*hit and run*). Se uma firma *insider* aumenta seu preço acima do custo marginal, isso atrairia as firmas *out-siders*, provocando o desaparecimento de qualquer margem. Qualquer ineficiência em termos de aumento dos custos acima do custo médio teria efeito semelhante. Para eliminar a pressão de mercado, as firmas *insiders* têm que diminuir o preço até ele se igualar com o custo marginal. Deve-se ressaltar que *todas as firmas que atuam no mercado devem apresentar a mesma estrutura de custos* (HERSCOVICI, 2002).

A estrutura de um mercado contestável também pode ser representada na forma de jogo. Abaixo, separamos a formalização em duas matrizes: uma para firmas instaladas e outra para concorrentes potenciais, de modo a destacar o comportamento de cada um desses agentes. Para firmas instaladas, temos a Tabela 2.5.

<table>
<thead>
<tr>
<th>Tabela 2.5 – Jogo de mercado contestável, sob a ótica da firma instalada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estratégia</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Na Estratégia 1, uma firma instalada opta por adotar um preço p_i maior que o seu custo marginal, cmg. Isso geraria lucros econômicos extraordinários, atraindo os concorrentes potenciais que escoariam toda a demanda da firma, que estaria fora do mercado, perdendo os ganhos de oportunidade do investimento, opt. Na Estratégia 2, uma firma instalada opta por adotar um preço p_i menor que seu custo marginal. O resultado seria um prejuízo acumulado $D(p_i)(p_i - cmg)$, onde $D(p_i)$ seria a demanda do produto para o preço p_i cobrado. Na Estratégia 3, a firma instalada opta por adotar um preço p_i igual ao seu custo marginal, cmg, mantendo os lucros normais representados pelos ganhos opt de oportunidade.

Para concorrentes potenciais, temos a tabela 2.6.

<table>
<thead>
<tr>
<th>Tabela 2.6 – Jogo de mercado contestável, sob a ótica de concorrentes potenciais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situação</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>$p_i > cmg$</td>
</tr>
<tr>
<td>$p_i < cmg$</td>
</tr>
<tr>
<td>$p_i = cmg$</td>
</tr>
</tbody>
</table>
Na Situação $p_i > cmg$, uma firma instalada adota um preço p_i maior que o seu custo marginal, cmg. Devido aos ganhos econômicos extraordinários aferidos, o concorrente potencial opta por entrar no mercado. A possibilidade de cobrar um preço $p_j < p_i$ disponibiliza um prêmio $D(p_j)(p_j - cmg)$, onde $D(p_j)$ seria a demanda do produto para o preço p_j cobrado. Na Situação $p_i < cmg$, uma firma instalada opta por adotar um preço p_i menor que o custo marginal, cmg. Não é possível oferecer preços mais baixos sem prejuízo, de modo que o concorrente potencial se mantém fora do mercado, aplicando seus recursos de outra maneira. Na Situação $p_i = cmg$, uma firma instalada opta por adotar um preço p_i igual ao custo marginal, cmg. Não é possível oferecer preços mais baixos sem prejuízo, de modo que o concorrente potencial também se mantém fora do mercado, empregando seus recursos em outro empreendimento que ofereça retornos mais consistentes.

As implicações da teoria dos mercados contestáveis em relação à política econômica regulatória são significativas, pois mostram ser possível manter estrutura muito concentrada de mercado sem que haja prejuízo para o interesse público. Quanto menores as barreiras à entrada e saída no setor, maior a sua eficiência, independentemente do produto ser ou não homogêneo, das firmas serem ou não atomísticas e das decisões serem ou não independentes (FAGUNDES; PONDÉ, 1998).

O caráter estático do modelo dos mercados contestáveis é apontado como um de seus pontos frágeis: a teoria assume que uma firma pode entrar no mercado e suprimir parte da demanda das firmas estabelecidas antes de qualquer reação à sua entrada (hit and run). Outra crítica ataca a assunção de inexistência de custos irrecuperáveis, pressuposto que carece de robustez, especialmente quando se tratam serviços públicos ligados à infraestrutura, segmento onde as empresas possuem elevados custos irrecuperáveis e grande volume de custos fixos, o que torna remota a possibilidade de que apenas as ameaças à entrada, por si só, imprimam a elas um comportamento socialmente benéfico (VICKERS; YARROW, 1991).

No modelo de mercados contestáveis o preço também é o mecanismo pelo qual se realizam os ajustes direcionadores para o equilíbrio. Todos os modelos apresentados possuem essa característica comum, o que remete à visão do mainstream sobre concorrência, que sempre costumou associá-la a concorrência em preços (POSSAS, 1996).
3. INDÚSTRIAS DE REDE

Uma rede é formada quando os vínculos entre os elementos de um sistema formam uma estrutura que segue regras determinadas (KNOKE; KUKLINSKI, 1991). Os avanços nos estudos dos arranjos de rede em diversas áreas do conhecimento têm levado muitos autores a defender o nascimento de uma “nova ciência das redes”, voltada para entender a dinâmica dessas estruturas (WATTS, 2003).

As “indústrias de rede” compartilham uma série de características comuns, como a presença de externalidades de demanda, necessidade de padronizações, custos de transferência e significativas economias de escala na produção (SHY, 2001). Essas características aparecem em setores com especificidades diversas, como telecomunicações, ferrovias, fornecimento de gás e energia elétrica, e dificultam a manutenção de uma estrutura concorrencial dentro dos modelos capazes de gerar eficiência econômica apresentados no capítulo anterior. Isso levanta questões quanto à necessidade e a forma como a regulação econômica deve se comportar (DIAS & RODRIGUES, 1997).

A nossa intenção neste capítulo é apresentar essas características comuns e fazer uma investigação inicial de seus desdobramentos nos resultados proporcionados pelas estruturas de concorrência baseadas em guerra de preços já apresentadas.

3.1. Externalidades de demanda

A questão das “externalidades de consumo” foi inicialmente abordada por KATZ & SHAPIRO (1985). Esse estudo avançou com vários autores, sendo posteriormente estendido como uma característica das indústrias de rede (SHY, 2001). KATZ & SHAPIRO (1985) apresentam o seguinte conceito em seu trabalho:

As externalidades de consumo podem ser geradas através de um efeito físico direto do número de compradores sobre a qualidade do produto. A utilidade que deriva de um consumidor comprando um telefone, por exemplo, depende claramente o número de familiares ou empresas que aderiram à rede telefônica. Essas externalidades de rede também estão presentes para outras tecnologias de comunicações, incluindo telex, redes de dados, e equipamentos de fax.
É necessário destacar que as externalidades de rede são consequências do efeito de rede (*network effect*), que ocorre quando a utilidade de determinado produto ou serviço é influenciada pela quantidade de seus consumidores. O efeito de rede pode ser positivo, quando o aumento no número de consumidores faz com que o produto ou serviço se torne mais útil para cada consumidor; ou negativo, quando o aumento no número de consumidores faz com que o produto ou serviço se torne menos útil para cada consumidor (LIEBOWITZ, 2002). As externalidades surgem quando os agentes econômicos falham em internalizar os efeitos de rede produzidos em seus mercados (LIEBOWITZ; MARGOLIS, 1994). Pode-se definir *internalização* como o fato dos agentes se beneficiarem da totalidade dos efeitos gerados pela sua atuação, no caso de uma externalidade positiva, ou financiarem a totalidade dos custos resultantes de suas ações, no caso de uma externalidade negativa (LÉVÈQUE apud HERSCOVICI, 2008a).

Um outro conceito importante para entender o funcionamento dos mercados caracterizados pela existência de externalidade de rede é *massa crítica* (*critical mass*). Como a quantidade de usuários afeta a utilidade percebida dos produtos para os consumidores, considerando efeitos de rede positivos, uma quantidade muito baixa de usuários geraria uma utilidade percebida muito pequena. A pequena utilidade percebida provocaria a evasão de alguns usuários, diminuindo ainda mais a utilidade, que provocaria novas evasões, num processo contínuo que condenaria a rede à extinção.

Por outro lado, ainda considerando efeitos de rede positivos, uma quantidade muito alta de usuários geraria uma utilidade percebida muito grande. A grande utilidade atrairia novos usuários, que aumentariam mais a utilidade, provocando novas adesões, num processo também contínuo que levaria ao crescimento da rede. *Massa crítica* é a quantidade de usuários que condena a rede a aumentar ou diminuir vertiginosamente (ECONOMIDES; HIMMELBERG, 1995).

Assim, a situação de uma estrutura de mercado com externalidades de rede, considerando uma curva de oferta perfeitamente elástica, pode se encontrar em três situações distintas (VARIAN, 2004). Essa dinâmica pode ser analisada de maneira didática com o auxílio do Gráfico 3.1 (HERSCOVICI, 2008a).
Gráfico 3.1 - Desenvolvimento de rede com externalidades positivas

No eixo vertical temos a quantidade demandada ou ofertada e no horizontal o número de usuários. Tanto a curva de demanda D(x) quanto a curva de oferta O(x) são apresentadas como funções do número “x” de usuários. O ponto A é a origem dos eixos, sendo seu valor equivalente a zero. O ponto M representa a massa crítica e Z o número total de usuários presentes no mercado.

O segmento AM corresponde à fase de criação da rede. Nele, a oferta é sistematicamente superior à demanda, em virtude da baixa utilidade percebida do serviço para os usuários (HERSCOVICI, 2008a). Essa é uma situação análoga ao paradoxo do "Ovo e a Galinha": muitos consumidores não têm interesse em comparar o bem porque a base instalada de usuário é muito baixa, e a base instalada de usuários é muito baixa porque muitos consumidores não têm interesse em comparar o bem (ECONOMIDES; HIMMELBERG, 1995).

Na fase do segmento AM, ocorre a necessidade de disponibilização gratuita ou subsidiada de serviços para o consumidor como forma de criar o mercado, alcançar a massa crítica e possibilitar, posteriormente, tentativas de internalização dos efeitos de rede (BOMSEL apud HERSCOVICI, 2008a). Caso a massa crítica nunca seja atingida, a empresa retrocederá para o equilíbrio estável com demanda e oferta iguais a zero (VARIAN, 2004).

No ponto de massa crítica M há um equilíbrio instável. Se houver um decréscimo marginal de usuários, a utilidade do bem será reduzida, provocando a fuga dos usuários e o desaparecimento da rede (VARIAN, 2004). Um acréscimo marginal aumentaria a utilidade do bem, desencadeando o comportamento esperado para o segmento MZ.
No segmento \overline{MZ} a utilidade já sustenta a demanda de usuários e continua aumentado com a sua quantidade. A utilidade crescente faz com que a demanda seja sistematicamente superior à oferta, o que permite explicar o desenvolvimento da rede (HERSCOVICI, 2008a). O crescimento também responde a um mecanismo de auto-realização das expectativas: se os usuários acreditam que o tamanho da rede tende a aumentar, eles vão aderir a ela; o aumento real faz com que as expectativas continuem otimistas, aumentando ainda mais a rede (CURIEN apud HERSCOVICI, 2008a). Nessa fase de expansão, é possível que ocorram congestionamentos temporários, devido a demanda ser superior à oferta, podendo a qualidade do serviço se tornar precária em função da demanda ser superior à capacidade de fornecimento. O aumento continua até alcançar o ponto Z, onde se encontra um equilíbrio estável. A utilidade crescente garante que não haja retrocesso no número de usuário e o crescimento está limitado apenas ao tamanho do mercado (HERSCOVICI, 2008a).

Uma maneira complementar de analisar a dinâmica das redes é através do modelo pioneiro elaborado por Jeffrey Rohlfs (1974). Ele parte do princípio de que uma porção da função de utilidade de um consumidor é diretamente proporcional ao aumento da adesão de outros consumidores. A utilidade U de um usuário qualquer seria dada pela proporção f da utilidade total w percebida para a rede, situação onde todos os usuários do mercado estariam subscritos nela. Com base na sua utilidade U ser maior ou menor que o preço p cobrado para adesão ao serviço – no caso telecomunicações, o usuário selecionaria entre aderir à rede ou ficar fora dela. Formalmente, a utilidade U do usuário seria determinada por

$$U = fw \quad (3.1)$$

O usuário aderiria à rede se:

$$U \geq p \quad (3.2)$$

Rohlfs divide os consumidores em diferentes faixas, com diferentes funções de utilidade, conforme sua percepção sobre a utilidade do serviço de telecomunicações em relação a outros itens de consumo. Essas faixas são representadas no modelo pela própria
variável $0 \leq f \leq 1$. Assim, no modelo, o f informa simultaneamente o nível de utilidade atribuído por uma faixa de usuários à rede e a quantidade de usuários existentes nessa faixa. Considerando um grupo de n consumidores potenciais para uma rede, com diferentes percepções de utilidade para o serviço, o modelo permite entender parte da mecânica de crescimento das redes.

Os consumidores possuem diferentes avaliações para a utilidade da rede, conforme o número de usuários que a compõem. Alguns consumidores atribuem utilidade significativa para a rede mesmo que ela tenha poucos usuários, enquanto outros necessitam de uma rede mais abrangente para lhe atribuir utilidade significativa (diferentes disposições a pagar). Esses usuários estariam uniformemente distribuídos em categorias indexadas pelo percentual da população que compõe a rede, f. Usuários que necessitam de um baixo f para valorizar a rede são consumidores que atribuem alta utilidade ao serviço, tendo grande propensão a pagar pelo mesmo. Usuários que necessitam de um alto f para valorizar a rede são consumidores que atribuem menos utilidade à ao serviço, tendo baixa propensão a pagar por ele. Consumidores com alta propensão a pagar pelo serviço tendem a aderir ao mesmo mais cedo, enquanto aqueles com baixa propensão tendem a retardar sua adesão. A distribuição dos consumidores potenciais no modelo pode ser representada, como segue no Gráfico 3.2 (RODRIGUES, 2005).

Gráfico 3.2 - Distribuição dos consumidores potenciais por serviços de telecomunicações.
No eixo horizontal estão os valores que pode assumir $0 \leq f \leq 1$. O eixo vertical aponta a quantidade absoluta de usuários potenciais em n que pode aderir a rede caso se alcance cada um dos possíveis valores de f. A função de distribuição, fd, é uma linha horizontal tracejada que representa a distribuição uniforme dos usuários entre todas as possibilidades de f. Usuários optam por aderir à rede sempre que essa apresenta utilidade maior ou igual à esperada, resultando na função de distribuição acumulada, fda, apresentada na linha de 45º a partir da origem no gráfico. Havendo pouca utilidade na rede, com f próximo a zero, por exemplo, apenas os usuários que atribuem alta utilidade ao serviço estariam dispostos a aderir. Havendo alta utilidade na rede, com f próximo a 1, por exemplo, praticamente todos os usuários estariam dispostos a aderir à mesma. No meio termo, com $f = 1/2$, por exemplo, metade dos usuários estaria disposta a aderir à rede.

Como já exposto, no modelo, para ser atrativa, é necessário que a utilidade U supere o preço p cobrado para adesão ao serviço. A utilidade marginal w percebida por um grupo de usuários que compõe a fórmula 3.2, por sua vez, depende da proporção f do número de usuário subscritos na rede, na seguinte forma (ROHLFS, 1974):

$$w = n(1 - f)$$

(3.3)

Combinando as equações 3.1, 3.2 e 3.3, pode ser montada a equação inversa da demanda pelos serviços de telecomunicação do modelo, conforme a seguir:

$$p = fw$$

$$p = nf(1 - f)$$

(3.4)

A demanda por serviços de telecomunicações seria positivamente inclinada nos baixos níveis de demanda, passando a inclinação negativa nos níveis mais altos. Esse fato se explica pela propensão marginal a consumir dos clientes, que aumenta com o aumento da demanda devido a externalidade de rede predominar sobre o efeito negativo do preço. Quando a rede de assinantes atinge a metade dos potenciais consumidores, o domínio do efeito negativo do preço sobre a externalidade impõe inclinação negativa na função de demanda.
Esse comportamento fica claro quando a curva inversa de demanda apresentada na fórmula 3.4 é apresentada visualmente, como no Gráfico 3.3 (ROHLFS, 1974).

Gráfico 3.3 - Demanda por serviços de telecomunicações

O comportamento observado no segmento \(0B\) no gráfico equivale ao do segmento \(AM\) da análise anterior no Gráfico 3.1: a massa crítica não foi alcançada, o preço é superior à utilidade percebida, ocorre a diminuição cumulativa da quantidade de usuários e a rede se extingue. No segmento \(BC\) da curva, a utilidade percebida pelos usuários é maior que o preço cobrado. O formato de parábola se explica pela existência de um excedente diferenciado dos consumidores, devido às suas avaliações heterogêneas da utilidade do serviço. O ponto onde \(n/2\) corresponde a uma situação onde se maximiza a utilidade do conjunto de usuários. No segmento \(0,5C\), a curva é decrescente devido à integração de consumidores com menor disposição a pagar, ou seja, que valorizam menos o serviço prestado. No segmento \(C1\), o preço é superior à utilidade, o que implica em uma diminuição da quantidade de usuários. Assim, com comportamento favorável dos custos, no ponto \(C\) a firma alcança a maior diferença entre seu preço e o custo marginal, maximizando seu lucro.

A visualização gráfica do esquema deixa claro que níveis mais altos para o preço \(A\), aumentam a extensão do segmento \(0B\) e o valor da massa crítica necessária para evitar o retrocesso da rede. Isso reflete o fato de que, sob o ponto de vista dos usuários, a
utilidade disponibilizada deve superar seu custo de adesão. Suplantar um custo mais alto, exige uma utilidade mais alta, que redonda em uma rede mais numerosa. Esse raciocínio também justifica a estratégia de barateamento ou subsídio dos custos de adesão em redes recém formadas ou demasiadamente pequenas.

Por outro lado, o modelo também reflete a disposição dos usuários em pagar mais para aderir a redes maiores. Uma vez que a utilidade da rede está diretamente associada ao número de usuários, o preço de acesso a redes grandes pode ser mais alto que o de redes pequenas. Isso pode ser facilmente observado na equação 3.1, onde valores mais altos para \(f \) proporcionam utilidade mais alta, até o limite \(w \) da faixa de usuários, que representa a utilidade total percebida pela faixa quando a rede abrange todo o mercado. Do ponto de vista estratégico das firmas, isso explica a distribuição gratuita observada em vários serviços de rede, que viabilizam seu crescimento inicial permitindo uma exploração posterior com preços de adesão mais altos (HERSCOVICI, 2008a).

Essas análises auxiliam na compreensão da dinâmica das redes e facilitam entender suas consequências em mercados concorrenciais. Para demonstrar o efeito concentrador das externalidades de rede no mercado, vamos trabalhar agora com uma manipulação dos modelos expostos.

Considere-se um mercado de rede com \(n \) usuários, onde \(n \in N \). Nesse modelo, os usuários podem escolher livremente entre duas firmas A e B, não havendo qualquer custo de transferência (moving costs), que serão abordados mais adiante. O objetivo dessa manipulação é demonstrar o efeito concentrador das externalidades de rede em estruturas concorrenciais, de modo que assumimos um mercado integralmente atendido por duas firmas, devendo cada um dos usuários necessariamente escolher entre uma delas. O produto é homogêneo e os usuários são racionais, escolhendo sempre a opção que lhes fornece maior utilidade. Cada usuário tem a mesma probabilidade \(\frac{1}{n} \) de desejar integração na rede dos demais. Aplicando a equação 3.1 da modelagem de Rohlfs para calcular a utilidade percebida por um usuário qualquer para aderir a uma das firmas A e B, temos o seguinte esquema:

\[
U_a = f_a w \\
U_b = f_b w
\]
A utilidade total \(w \), para o caso de todos os usuários subscritos na rede, é a mesma para ambas as redes em virtude da adoção da hipótese de ofertas homogêneas. A utilidade atribuída à rede da empresa A e à rede da empresa B depende apenas da parcela \(f \) do total \(n \) de usuários em cada uma delas. Chamemos de \(a \) o número de usuários da empresa A, e \(b \) o número de usuário da empresa B, de modo que \(a + b = n \). Relembrando a premissa que qualquer usuário pode desejar a integração dos demais com a mesma probabilidade \(\frac{1}{n} \), deriva-se que \(\frac{a}{n} \) é a probabilidade de encontrar integrado um usuário da empresa A e \(\frac{b}{n} \) é a probabilidade de encontrar integrado um usuário da empresa B. É simples concluir que \(f_a = \frac{a}{n} \) e \(f_b = \frac{b}{n} \). Substituindo no sistema de equações 3.5, temos:

\[
\begin{align*}
U_a &= \frac{a}{n}w \\
U_b &= \frac{b}{n}w
\end{align*}
\]

As duas opções estão interligadas pela presunção \(a + b = n \). Conforme pressupomos para demonstrar concorrência entre as empresas A e B, um consumidor deve necessariamente optar entre uma delas, não podendo ficar fora do mercado. Ele possui as funções de utilidade \(U_a \) e \(U_b \) de cada uma das empresas, conforme no sistema de equações 3.6. O comportamento esperado é que o consumidor selecione a empresa que lhe forneça maior utilidade. Logo, ele selecionaria estritamente a empresa A apenas na seguinte situação:

\[
U_a > U_b \\
\frac{a}{w} > \frac{b}{w} \\
\frac{a}{n} > \frac{b}{n} \\
a > b
\]
O tamanho da rede é fator determinante para a escolha do consumidor, devido ao efeito das externalidades de rede presente no modelo. Há um equilíbrio instável quando \(a = b \). Caso ocorra perturbação, todos os usuários devem migrar para a rede maior, devido ao mecanismo de feedback já explorado.

A interconexão consiste em possibilitar aos usuários de uma rede se integrarem com os de outra. No modelo de Rohlfs, isso significa que a utilidade total não depende apenas da proporção de usuários integrados na rede da empresa (vinculados a ela), mas de todos os usuários alcançados pela interconexão (usuários de outras empresas interconectadas). No sistema 3.6, isso equivaleria a substituir

\[
U_a = \frac{a}{n}w \\
U_b = \frac{b}{n}w
\]

por

\[
U_a = \left(\frac{a + b}{n}\right)w \\
U_b = \left(\frac{b + a}{n}\right)w
\]

Nesse novo sistema, \(U_a = U_b \), de modo que os usuários são indiferentes entre as empresas interconectadas. A interconexão elimina o efeito das externalidades de rede do modelo. Como já visto, em redes isoladas os preços de adesão são componentes estratégicos para o crescimento e valorização da rede: é necessário seu subsídio inicial para viabilizar uma futura exploração econômica (HERSCOVICI, 2008a). Trabalhamos com o pressuposto de que os usuários consideram em sua seleção preço, qualidade e funcionalidade dos serviços. Eles seriam capazes de precificar adequadamente os montantes de qualidade e funcionalidade, descontando esses valores nos preços. Havendo redes concorrentes, esses preços de adesão passam a ser um importante componente estratégico.
Vamos considerar que a empresa A cobre um valor \(p_a \) para a adesão à sua rede. A utilidade total percebida pelos usuários, \(U_a \), seria menor para preços mais altos. Como vimos nos comentários da equação 2.2, essa relação pode ser modelada através da razão da utilidade pelo preço. Seguindo a mesma lógica para um preço \(p_b \) na empresa B, manipulando as equações 3.6, teríamos para redes não interconectadas as seguintes fórmulas:

\[
U_a = \frac{a \ w}{n \ p_a} \tag{3.8}
\]

\[
U_b = \frac{b \ w}{n \ p_b}
\]

Estando as redes não interconectadas, caso as empresas cobrem o mesmo preço de adesão (\(p_a = p_b = p \)), o efeito das externalidades de rede permaneceria ativo, exatamente como no exemplo anterior, promovendo a concentração do mercado em favor da empresa com maior número de usuários. Para um consumidor selecionar A, por exemplo:

\[
U_a > U_b
\]

\[
\frac{a \ w}{n \ p_a} > \frac{b \ w}{n \ p_b}
\]

\[
\frac{a \ w}{n \ p} > \frac{b \ w}{n \ p}
\]

\[
\frac{a}{n} > \frac{b}{n}
\]

\[
a > b
\]

Preços de adesão diferenciados podem ser adotados, com cada empresa tentando usar as externalidades de rede em seu favor. Com \(p_a \neq p_b \), para um consumidor selecionar A, por exemplo:

\[
U_a > U_b
\]
\[
\frac{a}{n} \frac{w}{p_a} > \frac{b}{n} \frac{w}{p_b}
\]

\[
\frac{1}{p_a} > \frac{1}{p_b}
\]

\[
\frac{a}{b} > \frac{p_a}{p_b}
\] (3.9)

Ou seja, para um usuário selecionar estritamente a empresa A, é suficiente que a proporção \(\frac{a}{b} \) seja maior que a proporção \(\frac{p_a}{p_b} \). Um exemplo numérico facilita compreender o significado dessa conclusão. Vamos supor como preços de adesão \(p_a = 2p_b \). Nessa condição, observa-se que a empresa A cobra pela adesão o dobro da empresa B. Sem externalidades de rede e com produtos homogêneos, a situação esperada seria o mercado selecionar a empresa que cobra mais barato, havendo a migração dos usuários da empresa A para a empresa B. Com redes não interconectadas, havendo portanto externalidades de rede, aplique-se 3.9:

\[
\frac{a}{b} > \frac{p_a}{p_b}
\]

\[
\frac{a}{b} > \frac{2p_b}{p_b}
\]

\[
\frac{a}{b} > 2
\]

\[
a > 2b
\]

É condição suficiente que a rede de A seja maior que o dobro da rede de B para que as externalidades de rede compensem o efeito do preço de adesão. Para as relações de utilidade aplicadas, uma rede duas vezes maior permite um preço duas vezes mais alto. Caso \(a < 2b \), os usuários migrariam para a rede de B e A seria forçada a baixar seu preço de adesão. Vejamos o comportamento do mercado do modelo estando as redes adequadamente interconectadas. Adicionado preços em 3.7, como realizado em 3.8, temos:
Para que um usuário selecione a empresa A:

\[
U_a = \left(\frac{a}{n} + \frac{b}{n} \right) \frac{w}{p_a}
\]

\[
U_b = \left(\frac{b}{n} + \frac{a}{n} \right) \frac{w}{p_b}
\]

\[
\frac{w}{p_a} > \frac{w}{p_b}
\]

\[
p_a < p_b
\]

Em redes adequadamente interconectadas são neutralizados os efeitos das externalidades e o comportamento do mercado volta à normalidade, com os usuários selecionando as empresas que cobram preço mais baixo pelo mesmo serviço.

Assim, considerando um mercado integralmente atendido por duas firmas, observa-se que, conforme a relação 3.9, as externalidades de demanda – ou a influência do tamanho das redes na utilidade percebida pelos usuários – afetam a eficiência, pois influenciam as escolhas fazendo com que, para a seleção de serviços equivalentes, seja considerado outro fator que não o preço. Conforme 3.11, esse desdobramento específico pode ser, num primeiro momento, contornado pela interconexão sem custos das redes. Como veremos no capítulo seguinte, a cobrança pelo uso das redes torna o quadro mais complexo, possibilitando a reativação do efeito das externalidades de demanda mesmo em situações onde as redes estejam interconectadas.

3.2. Necessidade de padronizações

As indústrias de rede também têm como característica fornecer produtos que necessitam de complementaridade, ou seja, devem ser consumidos em conjunto com outros, ou poderão ter sua funcionalidade eliminada ou reduzida (SHY, 2001). Um exemplo simples é
o mercado de computadores, onde hardwares, softwares, periféricos e acessórios perderiam sua utilidade se não fossem usados em conjunto. As telecomunicações também apresentam complementaridade nas ofertas de acesso, comutação e transporte.

A existência da complementaridade exige a compatibilidade das ofertas, o que gera a necessidade de se definir padrões produtivos e tecnológicos. Isso é coordenado pelos comitês setoriais, que definem a padronização nesses mercados. Em telecomunicações, a função é desempenhada, no âmbito mundial, pela União Internacional das Telecomunicações (UIT), enquanto as regiões são coordenadas, normalmente, pelos governos nacionais. Protocolos para sinalização de chamadas dentro das redes de transporte e planos de numeração organizados são alguns exemplos das padronizações necessárias no setor. Sem elas, não há compatibilidade, o que compromete a prestação do serviço e impede a comunicação entre diferentes redes.

Numa guerra por padrões, os efeitos de rede fazem com que quanto mais pessoas e empresas adotarem um formato de produto em particular, maior a chance de que esse formato se torne o padrão dominante. Uma vantagem inicial em relação ao número de adeptos favorece a vitória na disputa. Uma vez adotado, há consideráveis custos de transferência, fazendo com que o padrão tenda a se perpetuar (HANSETH, 2000). A adoção de um padrão único, contudo, não é necessariamente a norma, sendo comum a evolução de padrões concorrentes para a coexistência, por meio do desenvolvimento de conversores de uma rede para outra.

Um exemplo notável dessa dinâmica ocorreu na década de 1980, quando surgiram dois formatos concorrentes no mercado de fitas magnéticas para gravação de vídeo: VHS e Betamax. O formato Betamax era tecnicamente superior ao VHS. Mesmo mediante a ampla campanha publicitária da Sony, empresa que detinha o direito sobre o formato
Betamax, o VHS acabou se estabelecendo e popularizando, o que geraria um tipo de inequívoca no longo prazo (ATHUR apud LICHA, 2004).

Esse acontecimento foi atribuído ao fato de que a Sony dificilmente licenciava a fabricação do Betamax para outras empresas, enquanto o VHS adotou uma política comercial muito mais flexível nesse ponto. Em determinado momento, todos tinham aparelhos VHS em casa. Os produtores de vídeo queriam ofertar para o maior número possível de usuários. Os usuários queriam ter acesso a maior oferta possível de vídeos. Pertencer à “rede VHS” passou a apresentar vantagem – e quanto mais usuários aderissem, melhor para seus integrantes. A externalidade de rede passou a agir, de modo que a diferença de qualidade entre os dois formatos passou a importar menos, mesmo que pudesse oferecer alguma vantagem.

A Sony, com o Betamax, apesar de muito esforço posterior, nunca conseguiu superar o efeito de rede provocado pela expansão inicial do VHS, que permaneceu hegémonico por muitos anos, até o surgimento de novas tecnologias substitutivas.

Outro exemplo pode ser encontrado no mercado de sistemas operacionais para computadores. Devido a fatores históricos, o sistema Microsoft Windows® alcançou ampla base de usuários, difundindo o emprego do conjunto de utilitários Microsoft Office®, cujo código era de propriedade da empresa. A difusão do Microsoft Office® padronizou os arquivos utilizados para uma série de atividades, criando um efeito positivo de rede para aqueles que possuíam o sistema, uma vez que quanto mais integrantes no clube, maior a vantagem individual em utilizar o Microsoft Office®, pois maior seria a portabilidade para consultar e editar arquivos em outros computadores.

Mesmo com a criação e desenvolvimento do sistema operacional Linux que, em certo momento, superou a eficiência do Microsoft Windows® em termos de estabilidade, funcionalidade e custo, houve grande dificuldade em popularizá-lo, devido à incompatibilidade com os arquivos protegidos do Microsoft Office®. Mesmo podendo dispor de um sistema operacional mais eficiente naquele momento, os usuários prescindiram do benefício em favor do já difundido efeito de rede. Atualmente, estão se desenvolvendo conversores que compatibilizam de forma cada vez mais perfeita os arquivos do Microsoft Office® e os utilitários Linux. Com a quebra desse efeito de clube, a concorrência por qualidade e custo está voltando a funcionar, estando a utilização do sistema operacional Linux
em expansão. Mas permanece menor que a utilização de Windows (aproximadamente 5% do total de usuários).

A dinâmica de como os efeitos de rede podem gerar uma seleção adversa, fazendo com que os produtos ou serviços de maior funcionalidade ou menor custo sejam preteridos em relação aqueles com menos qualidades, quando um mercado normal proporcionaria o contrário, pode ser demonstrado introduzindo a premissa de qualidades distintas no modelo desenvolvido na seção anterior.

Vamos supor que, por motivos de qualidade, os usuários atribuam ao serviço da empresa B uma utilidade total (com todos os usuários na rede) duas vezes maior que ao da empresa A. Isso significa que, a um mesmo preço, os usuários estariam duas vezes mais satisfeitos com o serviço da empresa B, ou pagando o equivalente à metade do preço que pagariam por esse serviço. Assumindo que a qualidade pode ser expressa na forma de preço, ou seja, que os consumidores podem precificar adequadamente diferenças na qualidade, a assunção significa que $p_b = 2p_a$. Aplicando 3.8, o usuário selecionaria a empresa mais eficiente, B, se:

$$U_b > U_a$$

$$\frac{b}{n} \frac{w}{p_b} > \frac{a}{n} \frac{w}{p_a}$$

$$\frac{b}{2p_a} > \frac{a}{p_a}$$

$$b > 2a$$

Ou seja, adotando as premissas do modelo, é necessário que a empresa mais eficiente tenha uma rede maior que o dobro da menos eficiente para que o mercado com externalidade não selecione a empresa de menor qualidade. Novamente, as externalidades de demanda afetam a eficiência, influenciado a escolha dos usuários que passa ser determinada por uma variável diferente do preço e qualidade precificada.

Nesse caso específico, apenas a disponibilização de conversores ou compatibilizadores completos e gratuitos, o que não se observa em grande parte dos mercados reais, como os casos Sony Vs. Betamax e padrão QWERTY descritos, poderia contrapor o efeito. Diante dessa impossibilidade prática, a situação concreta é incontornável, não podendo
as externalidades serem neutralizadas, de modo que são necessários outros instrumentos de análise para determinar a eficiência dessas estruturas.

3.3. Custos de transferência

As indústrias de rede apresentam custos de transferência (switching costs ou moving costs) na medida em que os consumidores habituados com determinados padrões de uso despenderiam um esforço maior que o benefício esperado para mudar esses padrões. Outros fatores, como taxas, multas e assimetria de informação também podem gerar custos significativos. Por exemplo, mudar de instituição financeira pode custar, em alguns casos, cerca de 6% do saldo médio em conta de um cliente, o que o desestimula a mudar de instituição mesmo que tenha alguma insatisfação naquela em que é correntista (SHY, 2001).

A existência de custos de transferência gera fidelização (lock-in), que pode ser entendida como a resistência em abandonar ou substituir um determinado serviço. Essa fidelização independe de qualquer eventual convicção pessoal do usuário e seu grau é função da quantidade dos custos de transferência. Esses custos podem assumir diferentes formas, das quais seguem alguns exemplos (SHAPIRO, VARIAN, 1999):

- **Contratos**: os usuários ficam presos a um contrato de prestação de serviço, sendo os custos de transferência representados pelo valor de uma multa por rescisão.

- **Treinamento e aprendizagem**: alterar o padrão de uso de um serviço inclui os custos de treinamento e aprendizagem, além das eventuais perdas de produtividade. Mudar do sistema operacional Microsoft Windows® para Linux pode ser mito custoso.

- **Conversão de dados**: cada parte de um software padronizado gera arquivos em formato particular, que pode ser usado por outros sistemas. Quando é introduzido um novo software, um procedimento de conversão pode ser necessário a fim de compatibilizar sua aplicação. Nesse caso, os custos de transferência crescem na medida que o volume de dados aumentam no decorrer do tempo.
• **Custo de pesquisa**: uma das razões pelas quais as pessoas não trocam de padrão de serviços é, freqüentemente, que elas evitam o custo da pesquisa para encontrar novos produtos.

• **Custo de fidelidade**: a troca de tecnologia pode resultar na perda de benefícios como programas para clientes preferenciais, como é o caso dos pontos de bônus em cartões de crédito e os programas de milhagens em companhias aéreas.

Como já exemplificado pelo caso bancário, a existência de custos de transferência pode exercer efeitos relevantes no ambiente concorrencial. O engessamento da capacidade do usuário exercer sua opção de escolha a qualquer tempo deixa a curva de demanda do mercado menos elástica, dificultando a entrada de novos ofertantes, aumentado o poder de mercado das firmas e propiciando as inequidades decorrentes. As características desses custos também comprometem de forma definitiva a adequação na utilização dos conceitos de Pareto e equilíbrio geral na análise concreta de eficiência em indústrias de rede. Os efeitos dos custos de transferência serão melhor analisados em 4.4.

3.4. Rendimentos de escala

Alfred Marshall expressou sua *lei do rendimento crescente* como um aumento de trabalho e capital leva geralmente a uma organização melhor, que aumenta a produtividade da ação do trabalho e do capital (MARSHALL, 1982), podendo-se entender que os rendimentos crescentes de escala são o resultado mais que proporcional do produto mediante uma alteração nos fatores empregados para a sua produção (SOUZA, 1980).

A existência de rendimentos de escala significativos é uma característica das indústrias de rede. Esses rendimentos se traduzem na forma inicial de vultosos custos irrecuperáveis, seguidos de custos marginais quase desprezíveis, o que implica uma função de custo médio que declina acentuadamente com o volume produzido e vendido aos consumidores (SHY, 2001). Os custos irrecuperáveis iniciais consistem nos recursos necessários para a construção e manutenção da rede até que seja alcançada a massa crítica de usuários ou, em algum casos, a efetiva construção da estrutura física que lhe dará suporte.
Nesse último caso, quando os custos são realmente vultosos, como ocorre em setores como transporte ferroviário e telecomunicações, também fica patente o bloqueio à entrada de novas firmas pela necessidade de duplicação dessa infra-estrutura.

Em alguns casos, os vultosos custos de entrada e os rendimentos em escala podem ser diminuídos com a adoção de políticas reguladas de desagregação dos elementos de rede (unbundling). Contudo, de modo geral, essa característica torna as indústrias de rede situações potenciais onde é impossível alcançar um estado de equilíbrio geral típico, devido a formação específicas de suas curvas de custo (SRAFFA, 1926). Isso também impossibilita a utilização dos conceitos de Pareto e equilíbrio geral em análises concretas de eficiência.
4. ALGUNS ASPECTOS DE CONCORRÊNCIA EM REDES

No capítulo anterior, com as relações 3.8, elaboramos um conjunto de equações que reflete um desenho de concorrência em preços considerando a existência de externalidades de rede. Demonstramos que redes não interconectadas geram efeitos indesejáveis na mecânica de mercado, provocando distorções que afetam a eficiência ao possibilitar a seleção de produtos menos vantajosos devido a um eventual favorecimento pelas externalidades. Também demosntramos, com as relações 3.10, que esse efeito pode ser neutralizado pela interconexão das redes, o que num primeiro momento asseguraria condições para que o sistema de preços proporcione uma seleção mais adequada do produto.

Agora, vamos explorar um pouco mais o aspecto da interconexão, pretendendo demonstrar que diferentes assimetrias da concorrência também provêm da adoção de critérios assimétricos na remuneração das redes, gerando distorções em modelos concorrenciais baseados em preço, mesmo com redes interconectadas. Após desenvolver as adaptações necessárias do modelo, apresentaremos algumas de suas possíveis conclusões analíticas, cujos limites e aplicações serão discutidos na parte final do trabalho.

4.1. Remuneração pelo uso das redes

Apresentamos, nas relações 3.8, um modelo simples que expressa um estado concorrenciais eficiente distorcido pela existência de externalidades de demanda em redes não interconectadas. Uma variação sua, dada nas relações 3.10, considera a efetivação de uma interconexão simples, sem custos, gerando como resultado o retorno ao estado concorrenciais eficiente baseado em guerra de preços. Todavia, em algumas indústrias de rede, o uso da rede de uma firma interconectada pode gerar custos para as outras firmas, conforme um regime de remuneração adotado.

Em telecomunicações, por exemplo, o regime em que há ausência de cobrança pelo uso das redes é chamado de bill and keep. Esse estado é refletido no modelo apresentado pelas relações 3.10. Quando há cobrança por qualquer uso das redes, o regime é chamado full billing, podendo haver regimes com billings parciais, conforme o volume de tráfego transitado. Nossos desenvolvimentos aqui considerarão que há cobrança por qualquer uso das redes, sem impedimento para que análises considerando billings parciais venham a ser desenvolvidas com base no mesmo raciocínio.
Consideremos duas empresas, A e B, cujas redes estejam interconectadas. No que tange os preços de adesão, sob o ponto de vista dos usuários, como desenvolvido no capítulo anterior, isso remete às relações expressas em 3.10.

\[U_a = \left(\frac{a}{n} + \frac{b}{n} \right) \frac{w}{p_a} \]
\[U_b = \left(\frac{b}{n} + \frac{a}{n} \right) \frac{w}{p_b} \]

(3.10)

Ou, de forma equivalente:

\[U_a = \frac{w}{p_a} \]
\[U_b = \frac{w}{p_b} \]

(4.1)

Assumamos que a empresa A cobre \(p_1 \) pelo uso de suas redes e a empresa B cobre \(p_2 \). Isso significa que qualquer trânsito pela rede das empresas incorrerá na cobrança dos valores respectivos. Sob o ponto de vista de quem utiliza as redes, independentemente da rede em que se encontra, isso significa que os preços cobrados são diferenciados conforme a rede de destino. Mantendo as premissas e notações do capítulo anterior, os novos preços entram como diminuindo a utilidade total percebida, podendo as funções de utilidade serem reformuladas da seguinte maneira:

\[U_a = \frac{w}{p_a + \frac{a}{n} p_1 + \frac{b}{n} p_2} \]
\[U_b = \frac{w}{p_b + \frac{a}{n} p_1 + \frac{b}{n} p_2} \]

(4.2)

Ou, de forma ordinalmente equivalente:
Essa estrutura, com redes interconectadas e cobrança isonômica pelo seu uso, independentemente da rede em que se encontra o usuário, faz com que seja selecionada a empresa que cobra o menor preço de adesão. Como condição para que um usuário selecione estritamente a firma A, por exemplo, aplicando 4.3, temos:

\[
U_a = \frac{w}{p_a} - \frac{a}{n} p_1 - \frac{b}{n} p_2 \\
U_b = \frac{w}{p_b} - \frac{a}{n} p_1 - \frac{b}{n} p_2
\]

(4.3)

Os resultados mudam quando são adotados critérios de remuneração que diferenciem a cobrança não só pela rede de destino, mas também pela rede de origem do usuário. Caso a empresa A cobre \(p_1 \) pelo uso de suas redes por seus usuários e \(p_4 \) pelo uso de suas redes por usuários da empresa B e a empresa B cobre \(p_2 \) pelo uso de suas redes por seus usuários e \(p_3 \) pelo uso de suas redes por usuários da empresa A, as relações expressas em 4.3 podem ser rescritas da seguinte maneira:

\[
U_a = \frac{w}{p_a} - \frac{a}{n} p_1 - \frac{b}{n} p_3 \\
U_b = \frac{w}{p_b} - \frac{a}{n} p_4 - \frac{b}{n} p_2
\]

(4.4)

De maneira genérica, como condição para que um usuário selecione estritamente a firma A, aplicando 4.4, temos:
Observa-se que a utilidade \(\frac{w}{p_a} \), percebida para a empresa A, depende não apenas do tamanho relativo \(\frac{a}{n} \) da sua rede ou do preço \(p_1 \) que ela cobra pelo uso de sua rede pelos seus usuários, mas também do preço \(p_3 \) que a empresa B cobra para que os usuários de A utilizem sua rede. Um usuário selecionaria a empresa A se o valor do desconto \(\frac{w}{p_a} \) que o preço de adesão impõe à utilidade percebida, mais a conjunção \(\frac{a}{n} (p_4 - p_1) \) da vantagem advinda do tamanho da rede ponderada pela diferença entre seus preços pelo uso de redes conforme a rede em que se encontra o usuário for maior que a soma desse conjunto de fatores da sua concorrente.

Analogamente, um usuário selecionaria estritamente a firma B se:

\[
U_a > U_b
\]

\[
\frac{w}{p_a} - \frac{a}{n} p_1 - \frac{b}{n} p_3 > \frac{w}{p_b} - \frac{a}{n} p_4 - \frac{b}{n} p_2
\]

\[
\frac{w}{p_a} + \frac{a p_4 + a p_1}{n} > \frac{w}{p_b} + \frac{b p_3 + b p_2}{n}
\]

\[
\frac{w}{p_a} + \frac{a (p_4 - p_1)}{n} > \frac{w}{p_b} + \frac{b (p_3 - p_2)}{n}
\]

(4.5)

Diferentes combinações das diversas variáveis geram diferentes efeitos no resultado concorrencial. Das conclusões que podem ser derivadas do modelo, gostaríamos de realçar duas situações específicas que consideramos merecer destaque no momento.
4.2. Assimetria intra e inter redes

Consideremos a situação onde haja uma política explícita de diferenciação pelo uso das redes por partes das empresas, conforme a rede em que se encontra o usuário. A empresa cobra um valor menor pelo uso de suas redes para os usuários que estejam nela e um valor maior pelo uso de suas redes para os usuários que estejam na rede da concorrente. Para ilustrar claramente o efeito, vamos considerar \(p_a = p_b = p \) e \(p_1 = p_2 = 0 \) e \(p_3 = p_4 = 1 \). Ou seja, ambas as empresas não cobram pela adesão e não cobram seus usuários pelo uso de suas redes, mas o fazem para usuários da rede concorrente.

Substituindo em 4.4, um usuário selecione estritamente a firma A se:

\[
\frac{w - \frac{a}{n} p_1 - \frac{b}{n} p_3}{p_a} > \frac{w - \frac{a}{n} p_4 - \frac{b}{n} p_2}{p_b}
\]

\[
\frac{w - \frac{a}{n} p_1 - \frac{b}{n} p_3}{w - \frac{a}{n} p_4} > \frac{w - \frac{a}{n} p_1 - \frac{b}{n} p_2}{w - \frac{a}{n} p_4}
\]

\[
\frac{b}{n} > \frac{a}{n}
\]

\[
a > b
\]

Apesar de interconectadas, o tamanho das redes é um fator determinante para as escolhas dos usuários. Resta evidente que a política de diferenciação pelo uso das redes por partes das empresas conforme a rede em que se encontra o usuário é uma forma de contornar o efeito neutralizador da interconexão sobre a concorrência, reativando as externalidades de redes. No exemplo extremo apresentado, a reativação é integral, com o tamanho da rede sendo o fator mais relevante para escolha dos usuários.

Mesmo em situações menos extremas, sem as restrições \(p_1 = p_2 \) e \(p_3 = p_4 \), mas com \(p_1 < p_4 \) e \(p_2 < p_3 \), algum grau de externalidade se mantém, com o tamanho das redes influindo no resultado das escolhas. Para facilitar a demonstração, vamos desenvolver a equação 4.5 desconsiderando os preços de adesão, com \(p_a = p_b = p \). Essa hipótese será relaxada na sequência.
Observa-se que, nesse caso, para que um usuário selecione a empresa A é suficiente que a participação relativa \(\frac{a}{b} \) da rede da empresa no mercado seja maior que a diferença relativa entre os preços intra-rede e inter-redes \(\frac{p_3 - p_2}{p_4 - p_1} \) adotados pelas empresas, o que evidencia a manutenção das distorções promovidas pelas externalidades de rede. Caso se presuma \(p_a \neq p_b \), os preços de adesão seriam outra variável a ser considerada pelos usuários, nos termos apresentados em 4.5 e 4.6.

Assim, a remuneração pelo uso das redes é um aspecto importante para evitar que externalidades distorcem resultados concorrenciais, ou seja, que o tamanho da rede represente uma diferença concorrencial significativa ao ponto de propiciar a seleção inadequada das empresas, com desdobramentos na estrutura de custos e na qualidade da prestação do serviço.

A equação 4.7 também realça um outro aspecto importante: o de que em um modelo que permite assimetria nos critérios de remuneração das redes, com base nas redes de origem e destino dos usuários, há incentivos para as empresas diminuírem o preço da remuneração intra-rede e aumentar o preço da remuneração inter-redes. Isso é facilmente observado considerando-se a hipótese da inexistência de externalidades de rede, o que pode ser introduzido com assunção \(a = b \). O resultado em 4.7, para que um usuário selecione estritamente a firma A, é o que se segue:
Sabemos que, no modelo, \(p_1 \) e \(p_4 \) são variáveis controladas pela empresa A. Elas representam respectivamente o valor cobrado pelo uso de redes de um usuário da rede de A e da rede de B. Para ser selecionada, a empresa A deve satisfazer a equação 4.8, tendo um claro incentivo em maximizar \(p_4 \) e minimizar \(p_1 \). Igualmente, sabemos que \(p_2 \) e \(p_3 \) são variáveis controladas pela empresa B. Elas representam respectivamente o valor cobrado pelo uso de redes de um usuário da rede de B e da rede de A. Para ser selecionada, a empresa B deve garantir que a equação 4.8 não seja satisfeita, tendo um claro incentivo em maximizar \(p_2 \) e minimizar \(p_3 \). Como afirmamos, em um modelo que permite assimetria nos critérios de remuneração das redes, com base nas redes de origem e destino dos usuários, há incentivos para as empresas diminuírem o preço da remuneração intra-rede e aumentar o preço da remuneração inter-redes. Quando relaxamos a premissa de exclusividade na escolha, podendo um mesmo usuário optar simultaneamente por mais de uma rede, o desejo de se beneficiar das externalidades geradas por cada uma delas justifica subscrições mútuas, como acontece na aquisição de vários chips de diferentes empresas no serviço de telefonia móvel do Brasil.

Assim, resta claro que, quando há interconexão, as externalidades de demanda podem ser muito importantes como elemento estratégico das firmas, tendo as regras de remuneração das redes papel importante nesse contexto. Regras que permitam discriminação de preços pela rede de origem e destino tendem a aumentar a importância das externalidades como elemento estratégico. Regras diferentes, contudo, podem ter conseqüências diferentes, como desenvolvemos a seguir.

4.3. Precificação do valor de uso

Quando há cobrança pelo uso em estruturas de mercado com redes interconectadas, a questão da precificação sempre se faz presente. Os valores de uso das redes
podem ser determinados livremente pelas empresas proprietárias ou, conforme o caso, serem objeto de regulação, onde o regulador tenta estabelecer valores que julga mais adequados conforme critérios comparativos ou de a aderência a custos. Não pretendemos desenvolver essa questão em grande profundidade, nos detendo a apontar algumas observações derivadas do modelo analítico que desenvolvemos até o momento.

Restou claro na seção anterior que, sendo permitidas assimetrias nos critérios de remuneração das redes com base nas redes de origem e destino dos usuários há uma tendência para que as empresas interconectadas diminuam o preço da remuneração intra-rede e aumentem o preço da remuneração inter-redes, o que pode gerar um estado de seleção adversa com prejuízo para a seleção adequada do produto pelos usuários.

A regulação dos valores de uso cobrados pode ser um mecanismo para evitar esse efeito, mas ela costuma ser acompanhada das dificuldades referentes à assimetria de informação entre o agente regulador e os agentes regulados. A aplicação das relações apresentadas em 4.5 e 4.6 evidenciam que a adoção de determinas regras para o estabelecimento da remuneração das redes pode proporcionar uma estrutura concorrencial que neutralize as externalidades de rede, evitando a seleção adversa.

Vejamos o caso onde seja adotada a restrição de que os preços pelo uso das redes não podem ser diferenciados pela rede em que se encontra o usuário, considerando os mesmos preços de adesão para melhor destacar o efeito desejado. Então, \(p_3 = p_1 \), \(p_4 = p_2 \) e \(p_a = p_b = p \). Aplicando-se 4.5, como condição para que um usuário selecione estritamente a firma A, temos:

\[
\frac{w}{p_a} + \frac{a}{n} (p_4 - p_1) > \frac{w}{p_b} + \frac{b}{n} (p_3 - p_2)
\]

\[
\frac{w}{p} + \frac{a}{n} (p_2 - p_1) > \frac{w}{p} + \frac{b}{n} (p_1 - p_2)
\]

\[
\frac{a}{n} p_2 - \frac{a}{n} p_1 > \frac{b}{n} p_1 - \frac{b}{n} p_2
\]

\[
\frac{a}{n} p_2 + \frac{b}{n} p_2 > \frac{a}{n} p_1 + \frac{b}{n} p_1
\]

\[
\frac{a + b}{n} p_2 > \frac{a + b}{n} p_1
\]
Os usuários selecionariam a firma A caso seu preço de uso de rede seja mais baixo que o preço de uso de rede da firma B e vice-versa. Para atraírem usuários, as empresas teriam incentivos em cobrar preços de remuneração mais baixos, minimizando custo e gerando eficiência. Não podendo ser diferente, o mesmo resultado é alcançado quando se aplica 4.7:

\[
\frac{a}{b} > \frac{p_3 - p_2}{p_4 - p_1}
\]

\[
\frac{a}{b} > \frac{p_1 - p_2}{p_2 - p_1}
\]

\[a(p_2 - p_1) > b(p_1 - p_2)\]

\[ap_2 - ap_1 > bp_1 - bp_2\]

\[ap_2 + bp_2 > bp_1 + ap_1\]

\[(a + b)p_2 > (a + b)p_1\]

\[p_2 > p_1\]

Realça-se assim que, além dos esforços de regulação para determinar preços de remuneração de redes por custos em indústrias de rede com empresas interconectadas, as regras adotadas pela remuneração tanto podem incentivar espontaneamente a determinação desses preços pelo mercado de forma eficiente como estimular o desenvolvimento de externalidades de rede pelos agentes.

4.4. Fidelização e aprendizagem

Além das questões relacionadas diretamente às externalidades de demanda, outras fontes importantes de assimetria podem ser encontradas nas indústrias de rede, sendo os custos de transferência uma das principais, conforme apresentado em 3.3. A incidência desses custos é intensificada pelo desenvolvimento de diferentes formas de capital ligadas ao conhecimento e a informação, sendo os mesmos intrínsecos e incontornáveis pelo sistema de mercado, comprometendo sua adequação como instância mais eficiente para regular a
produção e a distribuição econômica (HERSCOVICI, 2008c). O bloqueio à eficiência provocado pelas assimetrias relacionadas aos custos de transferência pode ser formalizado com o auxílio dos instrumentos que viemos aplicando até o momento. Para isso, assumimos como premissa que todos os custos de transferência podem ser adequadamente precificados, ampliando esse debate no capítulo final, item 5.2.

Os custos de transferência podem ser segmentados em duas categorias: aqueles que são influenciados pela rede em que o usuário se encontra, como fidelização; e aqueles que são influenciados pela rede a que o usuário pretende aderir, como custos de pesquisa e aprendizagem. Adotaremos o termo custos de fidelização para designar aqueles custos que são influenciados pela rede em que o usuário se encontra e o termo custos de aprendizagem para designar aqueles custos que são influenciados pela nova rede a que o usuário pretende aderir.

Usuários que se encontrem em uma determinada rede, e desejam mudar para outra, sofrem os custos de fidelização da rede em que se encontram e não da que se destinam. Igualmente, sofrem os custos de aprendizagem da rede a que pretendem aderir, mas não os da rede em que se encontram. Dentro da modelagem, essa assimetria afeta a própria composição das funções de utilidade com que o usuário se depara, que são diferentes conforme a rede em que ele se encontra.

Chamemos L_a e L_b os custos de aprendizagem para aderir respectivamente às redes A e B; e F_a e F_b, respectivamente, os custos de fidelização nessas duas redes. Considerando o caso expresso no sistema de equações 3.8, um usuário na rede de A estaria sujeito às seguintes equações:

$$ U_a = \frac{a \, w}{n \, p_a} $$

(4.9)

$$ U_b = \frac{b \, w}{n \, p_b} - F_a - L_b $$

Caso deseje permanecer na rede A, o usuário não incorreria em custos relativos à transferência. Caso opte por se transferir para a rede de B, sua utilidade percebida seria diminuída pela necessidade de arcar com os custos F_a e L_b. Um usuário na rede de B, estaria sujeito a um conjunto distinto de funções, dado por:
\[U_a = \frac{a w}{n p_a} - F_b - L_a \] (4.10)

\[U_b = \frac{b w}{n p_b} \]

Caso deseje permanecer na rede B, o usuário não incorreria em custos relativos à transferência. Caso opte por se transferir para a rede de A, sua utilidade percebida seria diminuída pela necessidade de arcar com os custos \(F_b \) e \(L_a \). Um usuário fora das duas redes, tendo que optar por uma delas, estaria sujeito às seguintes funções:

\[U_a = \frac{a w}{n p_a} - L_a \] (4.11)

\[U_b = \frac{b w}{n p_b} - L_b \]

O usuário não arcaria com nenhum custo de fidelização, mas teria que suplantar o custo de aprendizagem em qualquer das redes que pretenda aderir. As relações em 4.11 mostram que as empresas possuem incentivos para diminuir ao máximo seus custos de aprendizagem, visando facilitar adesões à sua rede. Cada rede representa um “sistema tecnológico” onde os custos de aprendizagem são minimizados e fora da qual esses custos são mais importantes (HERSCOVICI, 2007). Isso também pode ser observado nas equações 4.9 e 4.10, apesar de ficar mais claro numa reformulação das mesmas. Uma forma equivalente de expressar as relações 4.9, que considera usuários subscritos na rede de A, seria:

\[U_a = \frac{a w}{n p_a} + F_a \] (4.12)

\[U_b = \frac{b w}{n p_b} - L_b \]

Da mesma maneira, para 4.10, que considera usuários subscritos na rede de B:
Resta claro que as firmas possuem incentivos para diminuir ao máximo seus custos de aprendizagem, \(L_a \) e \(L_b \), tendo em vista diminuir o redutor de suas utilidades para usuários que se encontram fora da rede, tendendo a facilitar o aumento das adesões. Por outro lado, também fica claro que elas possuem incentivos para aumentar seus custos de fidelização, \(F_a \) e \(F_b \), visando inibir a saída de usuários da sua rede.

Como os custos de fidelização, ou seja, conforme nossa definição, os custos que são influenciados pela rede em que o usuário se encontra, não incidem uniformemente em todos os usuários, nem incidem uniformemente no mesmo usuário em todas as situações, não há como o mecanismo de mercado evitar diretamente o incentivo de aumento desses custos. Isso fica claro para o caso de um usuário fora das redes, onde os custos de fidelização não influem diretamente em sua avaliação de utilidade das firmas, conforme expresso em 4.11. Ao entrar em uma das redes, o custo de fidelização passa a ter papel importante em suas escolhas, conforme expresso em 4.12 e 4.13.

A exploração dessas assimetrias pode compor variável estratégica para a ação competitiva das firmas. Há material explorando esses desdobramentos sob diferentes enfoques (HERSCOVICI, 2008c), mas nossos desenvolvimentos podem contribuir em algum grau com estimativas do uso desse instrumento, considerando as premissas adotadas em nossas modelagens. Como vimos, há um incentivo natural das firmas reduzirem seus custos de aprendizagem. Por outro lado, há um incentivo de manter custos de fidelização positivos. Assim, observa-se que a lógica de oferta se traduz pela manutenção de um nível elevado de custos de fidelização. Considerando que a estratégia dominante das firmas seria reduzir os custos de aprendizagem para zero, vamos desenvolver um raciocínio desconsidera esses custos e explorando o uso estratégico dos custos de fidelização.

Relembramos a característica assimétrica do conjunto de funções de utilidade com que o usuário se depara não é isonômico simultaneamente, pois ele se altera conforme a rede a que o usuário está aderido. Isso ocorre porque um usuário não teria custos de transferência para permanecer na rede em que se encontra. Assim, caso um usuário que se
encontre na rede A, deparando-se, portanto, com as equações de utilidade expressas em 4.12, optasse por se transferir para a rede B, passaria automaticamente a se deparar com as equações de utilidade expressas em 4.13. Sob a ótica de 4.13, desconsiderando os custos de aprendizagem, observa-se a seguinte condição para que um usuário na rede da empresa B selecione a rede da empresa A:

\[U_a > U_b \]

\[\frac{a}{n} \frac{w}{p_a} > \frac{b}{n} \frac{w}{p_b} + F_b \]

\[F_b < \frac{a}{n} \frac{w}{p_a} - \frac{b}{n} \frac{w}{p_b} \] \hspace{1cm} (4.14)

É necessário que o custo de transferência \(F_b \) seja menor que a diferença entre os benefícios que serão obtidos na adesão à rede da empresa A e aqueles proporcionados na rede da empresa B. Considere-se a situação de duas redes adequadamente interconectadas, conforme sistema de equações 3.10. Um usuário na rede de B estaria sujeito as seguintes funções de utilidade:

\[U_a = \left(\frac{a}{n} + \frac{b}{n} \right) \frac{w}{p_a} \] \hspace{1cm} (4.15)

\[U_b = \left(\frac{b}{n} + \frac{a}{n} \right) \frac{w}{p_b} + F_b \]

Observa-se a seguinte condição para que um usuário na rede da empresa B selecione a rede da empresa A:

\[U_a > U_b \]

\[\left(\frac{a}{n} + \frac{b}{n} \right) \frac{w}{p_a} > \left(\frac{a}{n} + \frac{b}{n} \right) \frac{w}{p_b} + F_b \]

\[\frac{w}{p_a} > \frac{w}{p_b} + F_b \]
Nessa situação, \(\frac{w}{p_a} \) são os benefícios que serão obtidos na adesão à rede da empresa A e \(\frac{w}{p_b} \) aqueles proporcionados na rede da empresa B.

Vejamos um exemplo numérico. Supondo que a empresa A tenha 40% do mercado e passe a aplicar um preço \(p_a = 2 \) para tentar ampliar sua participação no mesmo. A empresa B tem 60% do mercado e pratica o preço \(p_b = 5 \). Os usuários avaliam o benefício total do serviço de telefonia, com todos os usuários na rede como \(w = 100 \). Assuma-se que a empresa B possa aplicar uma multa contratual \(F_b \) para os usuários que saíam da sua rede, não havendo outros custos de transferência. Vejamos qual seria o valor necessário para evitar a migração dos usuários para empresa com preço mais baixo. Supondo redes não interconectadas, como condição para que um usuário selecione estritamente a firma A, apliquemos a relação 4.14:

\[
F_b < \frac{a \cdot w}{n \cdot p_a} - \frac{b \cdot w}{n \cdot p_b}
\]

\[
F_b < 0.4 \times \frac{100}{2} - 0.6 \times \frac{100}{5}
\]

\[
F_b < 20 - 12
\]

\[
F_b < 8
\]

Para que a firma B impeça a migração dos usuários para a empresa que cobra um preço mais barato pelo mesmo serviço, é suficiente que se cobre uma multa por fidelização \(F_b \geq 8 \). Cobrar uma multa adequada pela fidelização seria suficiente para a firma B evitar a migração dos usuários para firma concorrente que cobra com preço mais baixo pelo mesmo serviço. Façamos uma análise com os mesmos parâmetros supondo redes interconectadas. Como condição para que um usuário selecione estritamente a firma A, apliquemos a relação 4.14:
\[F_b < \frac{w}{p_a} - \frac{w}{p_b} \]

\[F_b = \frac{100}{2} = \frac{100}{5} = 20 \]

\[F_b < 50 - 20 \]

\[F_b < 30 \]

Ou seja, com redes interconectadas, seria necessário \(F_b \geq 30 \) para que o custo de transferência supere o benefício da mudança, impedindo a migração para a empresa A. A diferença nos resultados deve-se ao efeito das externalidades de rede, conforme foram modelados. Evidencia-se que os custos de fidelização podem alterar a utilidade percebida do serviço pelos usuários e influenciam o resultado esperado em ambiente competitivo.

Introduzindo a variável que representa \textit{custos de fidelização}, desconsiderando \textit{custos de aprendizagem}, na situação onde há preços de adesão e cobranças diferenciadas pelo uso das redes, conforme expresso em 4.4, observa-se como funções de utilidade para que um usuário que esteja na rede de na rede da empresa A:

\[U_a = \frac{w}{p_a} - \frac{a}{n} p_1 - \frac{b}{n} p_3 + F_a \quad (4.17) \]

\[U_b = \frac{w}{p_b} - \frac{a}{n} p_a - \frac{b}{n} p_2 \]

Igualmente, observa-se como funções de utilidade para que um usuário que esteja na rede de na rede da empresa B:

\[U_a = \frac{w}{p_a} - \frac{a}{n} p_1 - \frac{b}{n} p_3 \quad (4.18) \]

\[U_b = \frac{w}{p_b} - \frac{a}{n} p_a - \frac{b}{n} p_2 + F_b \]
Desenvolvendo-se as relações apresentadas em 4.17, um usuário na rede de A, permaneceria na rede de A, se:

\[
U_a > U_b
\]

\[
\frac{w}{p_a} - \frac{a}{n} p_1 - \frac{b}{n} p_3 + F_a > \frac{w}{p_b} - \frac{a}{n} p_4 - \frac{b}{n} p_2
\]

\[
F_a > \frac{w}{p_b} + \frac{b}{n} (p_3 - p_2) - \frac{w}{p_a} - \frac{a}{n} (p_4 - p_1)
\]

(4.16)

Da mesma maneira, desenvolvendo-se as relações apresentadas em 4.18, um usuário na rede de B, permaneceria na rede de A, se:

\[
U_a < U_b
\]

\[
\frac{w}{p_a} - \frac{a}{n} p_1 - \frac{b}{n} p_3 < \frac{w}{p_b} - \frac{a}{n} p_4 - \frac{b}{n} p_2 + F_b
\]

\[
F_b > \frac{w}{p_a} + \frac{a}{n} (p_4 - p_1) - \frac{w}{p_b} - \frac{b}{n} (p_3 - p_2)
\]

A característica assimétrica do conjunto de funções de utilidade com que o usuário se depara conforme a rede a que se encontra implica num comportamento não uniforme dos usuários. Isso significa que diferentes composições do estado inicial em que os usuários se encontram nas redes irão resultar em diferentes conjuntos possíveis de escolhas, de modo que não há uma uniformidade nos resultados, impossibilitando análises que considerem a convergência para um ponto de equilíbrio geral. Os custos de transferência, quando existentes, comprometem de forma definitiva a adequação na utilização dos conceitos de Pareto e equilíbrio geral na análise concreta de eficiência em indústrias de rede.

A importância dos custos de transferência como fator de assimetria e elemento estratégico das firmas tende a ser ainda mais ampliada em mercados cujo produto se caracterize pela menor tangibilidade, como ocorre com conhecimento, informação e cultura. Em setores dessa natureza, cujos produtos se caracterizam pela não exclusividade e não rivalidade dos bens, a dinâmica econômica sofre mudanças radicais, os direitos intelectuais
passam a representar barreiras importantes e a própria lógica de exploração das externalidades de demanda podem ser modificadas (HERSCOVICI, 2008c). Fazemos uma discussão mais detalhada desses desdobramentos no capítulo final, que trata das aplicações e limites de nossas verificações, seção 5.3.
5. APLICAÇÕES E LIMITES

As reflexões que desenvolvemos analisaram alguns dos efeitos que indústrias estruturadas em rede podem provocar no comportamento dos agentes e no funcionamento de mercados em concorrência por preços. Apresentamos alguns desdobramentos causados por regras de interconexão e remuneração pelo uso das redes nesse ambiente concorrencial, fazendo com que o uso das externalidades de redes possa desempenhar um papel importante na estratégia competitiva das firmas. Demonstramos, em especial, os limites em utilizar os conceitos de eficiência de Pareto e equilíbrio geral para análises concretas desses mercados, em virtude de assimetrias incontornáveis decorrentes dos custos de transferências, dos rendimentos de escala e da impossibilidade efetiva de interconexão eficaz em alguns mercados, sendo necessárias análises desenvolvidas com outros critérios analíticos.

Para alcançar essas conclusões, iniciamos com modelos que pressupõem o alcance do ótimo de Pareto através do equilíbrio competitivo promovido pela guerra de preços. Dentro do escopo do trabalho, esses modelos foram explorados até onde permitiram, tendo logo seu comportamento de eficiência desfigurado pela introdução de características típicas das indústrias de rede. Essa metodologia analítica faz com as conclusões relativas aos desdobramentos causados por regras de interconexão e remuneração pelo uso das redes sejam aplicáveis em mercados de rede que possam ser descritos através de modelos baseados em guerra preços. Os limites dessas reflexões integrais, portanto, tangenciam necessariamente a possibilidade ou impossibilidade de descrever indústrias de rede dessa maneira. Entendemos que essa questão, com natureza mais aplicada, deve ser tratada no âmbito de cada indústria de rede em particular, o que envolve um amplo e heterogêneo conjunto de setores.

Entre outros limites para a aplicação dos critérios de Pareto e equilíbrio geral na análise das redes, têm-se a impossibilidade da obtenção de um estado de equilíbrio em virtude de formações específicas dos custos (SRAFFA, 1926), que foi mencionada no trabalho, e o caráter estático dos comportamentos previstos nesses modelos (POSSAS, 1996). Essas questões, por serem largamente discutidas por outros autores, não foram tratadas aqui. Sobre a limitação desse instrumental analítico devido à complexidade dessas indústrias, contudo, devem ser desenvolvidos mais detalhadamente três aspectos: a convergência de redes, a representatividade dos preços e o advento do capital intangível.
5.1. Convergência de redes

A evolução tecnológica tem propiciado um movimento cada vez maior de convergência de ofertas, o que pode ser identificados em muitas indústrias de rede, seja em utilitários de software, setor bancário ou em telecomunicações.

Em ambientes de convergência com externalidades de rede, a forma como a internalização dessas externalidades é incorporada nas estratégias dos agentes é crucial para explicar a dinâmica competitiva do sistema (HERSCOVICI, 2008a). Pode-se definir *internalização* como o fato dos agentes se beneficiarem da totalidade dos efeitos gerados pela sua atuação, no caso de uma externalidade positiva, ou financiarem a totalidade dos custos resultantes de suas ações, no caso de uma externalidade negativa (LÉVÊQUE apud HERSCOVICI, 2008a).

A diferença de maturidade das redes instaladas também é determinante no contexto. Considerando duas firmas, A e B, um quadro de possíveis estratégias das firmas pode ser representado conforme Tabela 5.1 (HERSCOVICI, 2008a):

Tabela 5.1 – As combinações da concorrência.

<table>
<thead>
<tr>
<th>Situação</th>
<th>Resultado da internalização de um efeito de rede provocado pela firma A</th>
<th>Resultado da internalização de um efeito de rede provocado pela firma B</th>
<th>Efeito verificado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POSITIVO</td>
<td>NEUTRO</td>
<td>Internalização intrafirma</td>
</tr>
<tr>
<td>2</td>
<td>NEUTRO</td>
<td>POSITIVO</td>
<td>Desvio de internalização</td>
</tr>
<tr>
<td>3</td>
<td>POSITIVO</td>
<td>POSITIVO</td>
<td>Externalidades cruzadas: B se aproveita das externalidades de demanda criada por A e A das externalidades de demanda criadas por B</td>
</tr>
<tr>
<td>4</td>
<td>NEGATIVO</td>
<td>POSITIVO</td>
<td>O mercado de A está maduro, e o mercado de B em fase de crescimento.</td>
</tr>
</tbody>
</table>

Se a externalidade de demanda produzidas pela firma A se traduz de forma positiva para ela e neutra para a firma B (Situação 1), o agente A internaliza plenamente a externalidade que ele gerou. Essa situação é verificada quando as redes são separadas e os serviços prestados não são substitutos.

Se a externalidade de demanda produzidas pela firma A se traduz de forma neutra para ela e positiva para a firma B (Situação 2), há um desvio da internalização, de modo que a empresa não é capaz de aproveitar a externalidade de demanda que ela mesma criou. Essa situação pode ser observada em ofertas de serviços de utilidade aproveitados por
outras redes, como, por exemplo, o hospedador de imagens ImageShack® em relação ao gerenciador de conteúdo WordPress®.

Se a externalidade de demanda produzidas pela firma A se traduz de forma positiva para ela e para a firma B (Situação 3), ambas as redes estão em expansão. Essa situação é verificada em redes concorrentes interconectadas com tecnologia equivalente ou em redes diferentes que criem utilidades complementares mútuas. Esse último caso estimula a oferta conjunta e a fusão econômica de redes diferentes, como se tem observado com o Google®, Orkut® e YouTube®.

Se a externalidade de demanda produzidas pela firma A se traduz de forma negativa para ela e positiva para a firma B (Situação 4), um aumento da oferta de A gera interesse pelo produto de B e desinteresse pelo produto de A. Esse caso retrata que o mercado de A está maduro, e o mercado de B em fase de crescimento. Essa é a situação observada, por exemplo, na telefonia fixa em relação à telefonia móvel, o que produz distorções concretas consideráveis em relação aos modelos de concorrência tradicionais.

Os usuários que recebem a ligação não pagam nada para este serviço; isto, juntamente com o desenvolvimento dos planos pré-pagos, pode ser interpretado como uma subvenção paga pelos usuários da telefonia fixa em favor dos usuários da telefonia celular. Esta subvenção permitiu criar as redes específicas das diferentes operadoras de telefonia celular, propondo determinados serviços gratuitos; trata-se de transferências realizadas pelos usuários da telefonia fixa em favor dos usuários da telefonia celular. (HERSCOVICI, 2008b)

Além dos ganhos obtidos pela venda de serviço para os usuários, as empresas arrecadam receita pelo uso de suas redes por outras empresas. Essas transferências financeiras podem ser uma importante fonte de financiamento para algumas delas.

Nas remunerações entre empresas de telefonia fixa havia uma diretriz regulatória que seguia a lógica de integração espacial e de redistribuição social. No caso da telefonia celular, o conjunto dos usuários da telefonia fixa paga para os usuários da telefonia celular, mas os usuários da telefonia celular que mais se beneficiam são aqueles que
apresentam a menor disposição a pagar, geralmente os que optam por serviços pré-pagos. O efeito global em termos de redistribuição seria indeterminado (HERSCOVICI, 2008b).

Em telefonia, os volumes das transferências são, de fato, historicamente significativos, conforme o Gráfico 5.1.

Gráfico 5.1. Transferências telefonia fixa/móvel, Inglaterra, Alemanha e França

No Brasil, esses volumes transferidos também são historicamente crescentes, como pode ser derivado das Notas Explicativas apresentadas pelas três maiores empresas concessionárias do setor à Comissão de Valores Mobiliários do Brasil até 2009. Conforme consta nas Tabelas 5.2, 5.3 e no Gráfico 5.2.

Tabela 5.2 – Receita com uso de redes

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telemar</td>
<td>1.172,73</td>
<td>1.035,44</td>
<td>715,20</td>
<td>602,84</td>
<td>948,39</td>
<td>892,33</td>
</tr>
<tr>
<td>Brasil Telecom</td>
<td>734,80</td>
<td>702,71</td>
<td>490,58</td>
<td>421,68</td>
<td>436,34</td>
<td>466,78</td>
</tr>
<tr>
<td>Telefônica</td>
<td>809,17</td>
<td>754,49</td>
<td>534,83</td>
<td>405,28</td>
<td>465,79</td>
<td>487,80</td>
</tr>
</tbody>
</table>

Tabela 5.3 – Custos com interconexão

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telemar</td>
<td>2.516,54</td>
<td>2.393,54</td>
<td>2.792,26</td>
<td>3.331,67</td>
<td>3.270,89</td>
<td>3.990,36</td>
</tr>
<tr>
<td>Brasil Telecom</td>
<td>2.308,52</td>
<td>2.456,84</td>
<td>2.210,50</td>
<td>2.199,43</td>
<td>2.151,93</td>
<td>2.012,97</td>
</tr>
</tbody>
</table>
Essa tendência pode ser confirmada pelos balanços da telefonia móvel. Na TIM S/A, por exemplo, a participação do ganho pelo uso da rede nunca foi inferior a 30% da receita operacional líquida da empresa, como pode ser visto na Tabela 5.3, o que demonstra a importância da não neutralidade das redes em seu modelo de negócio.

Tabela 5.3 – Receitas TIM S/A

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso da Rede/ROL</td>
<td>32%</td>
<td>32%</td>
<td>34%</td>
<td>36%</td>
<td>34%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Essa configuração concreta de mercado proporcionar estratégias diferenciadas que envolvem, inclusive, a transferência de recursos entre as redes. Essa verificação, em grande medida, é complementar às conclusões que formalizamos de que há um incentivo para a exploração das regras de interconexão e remuneração pelo uso das redes na formulação de estratégias competitivas das firmas.

5.2. Representatividade dos preços

O fenômeno da convergência tecnológica e a mescla entre a oferta de produtos e serviços vem gerando uma prevalência da disputa concorrencial pela diferenciação na qualidade em detrimento de diferenciações nos preços dos serviços.
A concorrência se caracteriza pela complexificação dos diferentes produtos e serviços: é possível observar que não é mais possível distinguir produto e serviços, à medida que o material só é utilizável a partir da combinação entre um suporte (um terminal) e os programas que permitem utilizá-lo (Windoz, Mac Intosch, Linux, por exemplo). É possível falar em complexificação dos diferentes produtos e serviços à medida que a quantidade, a qualidade e a diversidade da informação embutida neles é crescente. A utilidade dos produtos e dos serviços é altamente diferenciada em função dos conhecimentos tácitos dos diferentes grupos de consumidores.

Por outro lado, esta complexificação se traduz por novas modalidades concretas de concorrência: a concorrência é cada vez mais qualitativa, esta qualidade podendo se definir a partir da quantidade, da diversidade e das modalidades de tratamento da informação embutidas no produto. Consequentemente, está tendo uma minimização do efeito preço e uma “heterogeneização” dos produtos e dos serviços: à diversificação da oferta corresponde uma segmentação da demanda, o que, em nível macroeconômico, corresponde às lógicas do pós-fordismo (HERSCOVICI, 2007).

Nesse contexto, é possível que seja mais adequado compreender a dinâmica econômica das redes através de instrumentos analíticos desenvolvidos a partir das construções teóricas elaboradas por Stiglitz, Akerlof e Grossman. Entretanto, apesar do valor desses instrumentos, acreditamos que essa dinâmica não compromete as conclusões alcançadas, de modo que ambas possuem caráter mais complementar que antagônico. Ao assumir a premissa de que as qualidades individuais dos serviços podem ser adequadamente precificadas pelos agentes, sendo expressas na forma de preços, foi realizada uma simplificação da realidade, com o objetivo claro de destacar determinado aspecto de seu comportamento. Cabe destacar que a premissa de qualidade expressa em preços não significa assumir que o preço é o único determinante de utilidade, uma vez que os modelos apresentados assumem que ela pode ser alterada pelos efeitos de rede e outros fatores, conforme já demonstrado.

Outro aspecto relativo à representatividade dos preços é que ela também pode ser questionada sob a assunção de que certos bens em indústrias de rede podem ser
considerados como “bens de experiência” (SHAPIRO; VARIAN, 1999), que são aqueles que só podem ser avaliados no próprio ato de consumo (GROSSMAN; STIGLITZ, 1976). Nesses bens, os preços não têm condições de transmitir todas as informações necessárias no que diz respeito aos componentes qualitativos, pois os usuários não são capazes de avaliar ex-ante sua utilidade (HERSCOVICI, 2008c). O tipo básico de bem de experiência é a informação, uma vez que não é possível avaliar com precisão sua utilidade antes de dispor dela.

Muitos mercados considerados indústrias de rede escapam da definição de bens de experiência, como o setor ferroviário e elétrico, onde a cultura moderna já proporciona informações suficientes para que os usuários avaliem ex-ante a utilidade atribuída ao seu serviço. Alguns mercados considerados indústrias de rede, entretanto, guardam aspectos que podem ser relacionados a bens de experiência.

Em telecomunicações no Brasil, os serviços de telefonia, por exemplo, em virtude do volume e complexidade das informações envolvidas na tarifação das chamadas cobradas, dificulta a análise antecipada da utilidade por parte dos usuários. Há um grande número de combinações possíveis para caracterizar uma oferta. As chamadas podem ser diferenciadas pela a faixa horária de sua realização durante o dia, bem como pelo dia da semana em que foi executada. A Tabela 5.4 ilustra as duas possibilidades de tarifação previstas no Plano Básico Local das Concessionárias do Serviço Telefônico Fixo Comutado (STFC). A Tabela 5.5 ilustra as quatro possibilidades de tarifação previstas no Plano Básico de Longa Distância Nacional (LDN) das Concessionárias do STFC.

Tabela 5.4 – Modulação horário no Plano Básico Local do STFC

<table>
<thead>
<tr>
<th>Período</th>
<th>2ª a 6ª</th>
<th>Sábado</th>
<th>Domingo e Feriado</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00 - 06:00</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>06:00 - 07:00</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>07:00 - 08:00</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>08:00 - 09:00</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>09:00 - 12:00</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>12:00 - 14:00</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>14:00 - 18:00</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>18:00 - 19:00</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>19:00 - 20:00</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>20:00 - 21:00</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>21:00 - 24:00</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

R = horário de tarifação reduzida.
N = horário de tarifação normal.
Fonte: Anatel.
Tabela 5.5 – Modulação horário no Plano Básico LDN do STFC, para um Degrau

<table>
<thead>
<tr>
<th>Período</th>
<th>2ª a 6ª</th>
<th>Sábado</th>
<th>Domingo e Feriado</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00 - 06:00</td>
<td>SR</td>
<td>SR</td>
<td>R</td>
</tr>
<tr>
<td>06:00 - 07:00</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>07:00 - 08:00</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>08:00 - 09:00</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>09:00 - 12:00</td>
<td>D</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>12:00 - 14:00</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>14:00 - 18:00</td>
<td>D</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>18:00 - 19:00</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>19:00 - 20:00</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>20:00 - 21:00</td>
<td>N</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>21:00 - 24:00</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

R = horário de tarifação reduzida.
N = horário de tarifação normal.
SR = horário de tarifação super reduzida.
D = horário de tarifação diferenciada.
Fonte: Anatel.

É importante ressaltar que outras modulações horárias são possíveis em diferentes planos de serviço, a critério das prestadoras, conforme as necessidades dos usuários. O Plano Básico LDN também distingue chamadas conforme a distância geodésica entre as localidades de origem e destino, conforme Tabela 5.6.

Tabela 5.6 – Diferenciação por Degrau no plano Básico LDN

<table>
<thead>
<tr>
<th>Classificação por Degrau</th>
<th>Distância Geodésica</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>até 50 km</td>
</tr>
<tr>
<td>D2</td>
<td>entre 50 e 100 km</td>
</tr>
<tr>
<td>D3</td>
<td>entre 100 e 300 km</td>
</tr>
<tr>
<td>D4</td>
<td>acima de 300 km</td>
</tr>
</tbody>
</table>

Fonte: Anatel.

Resultado é uma matriz tarifária de Longa Distância Nacional com 16 (dezesseis) combinações possíveis. O tipo de terminal, fixo ou móvel, também podem ser critérios de diferenciação. Como uma oferta deve esgotar todas as possibilidades de chamada, o volume de informação necessária para compreender efetivamente um plano de serviço é grande, algumas exigindo certo conhecimento técnico para a sua interpretação.

O conceito de unidade de tarifação na telefonia fixa é definido no art. 2º, inciso XXV do anexo à Resolução n.º 424/2005 da Anatel e consiste na fração mínima de tempo aplicável no faturamento de uma chamada. Esse valor, nos termos do art. 12, inciso IV da referida Resolução, é equivalente a no máximo 6 (seis) segundos no Plano Básico de Serviço (ANATEL, 2005).
De forma simplificada, uma vez que outros critérios devem ser considerados, podemos assumir que toda a cobrança por tempo de chamada em um plano de serviço da telefonia fixa feita em múltiplos da unidade de tarifação, devendo o tempo realmente transcorrido ser sempre arredondado para cima até seu múltiplo mais próximo. A Tabela 5.7 exemplifica o arredondamento para algumas chamadas, considerando uma unidade de tarifação de 6 (seis) segundos.

| Tabela 5.7 – Exemplo de faturamentos considerando unidades de tarifação |
|---------------------------|---------------------------|
| | Tempo Transcorrido | Tempo faturado |
| Chamada 1 | 00:00:10 | 00:00:12 |
| Chamada 2 | 00:01:17 | 00:01:18 |
| Chamada 3 | 00:05:01 | 00:05:06 |
| Chamada 4 | 00:03:00 | 00:03:00 |
| Chamada 5 | 01:05:21 | 01:05:24 |

Fonte: Elaboração Própria.

Considerando que a parcela de duração em segundos da chamada é aleatória, a diferença entre o tempo transcorrido e o tempo faturado da chamada pode ser estatisticamente estimada como um erro, dado por:

\[\text{Erro} = \frac{UT}{2} \]

Onde \(UT \) é a unidade de tarifação em segundos. Ou seja, uma unidade de tarifação de 1 (um) segundo corresponderia a um erro de medição de 0,5 segundos por chamada, irrelevante para efeitos de tarifação. Com a unidade de tarifação é de 6 (seis) segundos, obtém-se o erro médio de tarifação de 3 (três) segundos por chamada, o que é perfeitamente tolerável, uma vez que o erro é irrelevante comparado com a duração média de 2m30s das chamadas da telefonia fixa.

Nem todos os planos da telefonia fixa, contudo, precisam utilizar os 6 (seis) segundos como unidade de tarifação. Muitos Planos Alternativos de Serviço utilizam unidades diferentes, como 60 (sessenta) segundos. Quanto maior a unidade de tarifação, maior o erro médio da medição. Uma unidade de tarifação de 60 (sessenta) segundos, gera um erro de aproximadamente 30 (trinta) segundos. Considerando o tempo médio de chamada de 2m30s, uma unidade de tarifação de 60 (sessenta) segundos equivale a um aumento médio de
aproximadamente 30 (trinta) segundos na tarifação. Ou seja, se esta chamada for medida por uma unidade de 60 (sessenta) segundos, ela será aproximadamente 18% mais cara do que se fosse medida com uma unidade de 6 (seis) segundos.

Os cálculos também devem considerar o perfil de consumo médio dos usuários, o tempo médio de suas chamadas, o horário e regularidade de sua realização entre outras informações. A avaliação adequada depende, assim, de um conjunto de informações nem sempre disponíveis para os consumidores. Ainda que eles tivessem acesso a tais detalhes, dificilmente disporiam dos recursos para efetivar os cálculos necessários, em virtude de sua complexidade, conforme demonstramos.

Assim, o mais provável é que a análise ocorra através da fruição do serviço e sua comparação com os gastos históricos. Isso permite inferir que os serviços de telefonia, no setor de telecomunicações no Brasil, possuem um importante aspecto de bem de experiência, uma vez que sua utilidade efetiva só pode ser avaliada com o uso. A implicação é que os preços podem possuir valor limitado como mecanismo fornecedor de informação dentro desse setor. Isso mostra como outros elementos podem gerar assimetria nos parâmetros concorrências envolvendo indústrias de rede, mas não gera imunidade em relação aos efeitos distorcivos que regras assimétricas de remuneração de redes podem gerar ao ambiente concorrencial, conforme desenvolvemos.

5.3. A dimensão intangível

As indústrias de rede são compostas por diferentes setores com especificidades diversas, incluindo telecomunicações, bancos, ferroviarias, fornecimento de gás e energia elétrica. Todos se caracterizam por, em algum aspecto do negócio, produzir externalidades de demanda no sentido de que o tamanho da rede afeta a utilidade percebida pelos usuários. Em mercados onde os produtos se caracterizam pela não exclusividade e não rivalidade, que vêm aumentando vertiginosamente de importância nas últimas décadas, a dinâmica econômica das redes – e do próprio mercado – sofre mudanças radicais. Em setores que envolvem a produção e distribuição de conhecimento, informação e cultura, por exemplo, os desdobramentos das externalidades nas estratégias das firmas são mais específicos (HERSCOVICI, 2008c).

No que diz respeito à informação gratuita e pública, ocorrem externalidades positivas de demanda, uma vez que o aumento dos membros na rede corresponde um aumento da utilidade do serviço proposto (HERSCOVICI, 2004). Em função das características desses
ativos, da heterogeneidade dos processos de produção e dos trabalhos específicos envolvidos na sua produção, eles representam investimentos específicos irreversíveis, com custo de reprodução desprezível, o que os orienta para uma lógica diferente da produção em série padronizada. Incide sobre eles uma lógica de protótipo, onde, em última instância, é possível considerar que cada produto é único. Nesse tipo de transação, as relações de mercado, normalmente consideradas anônimas, passam a ser fortemente individualizadas (HERSCOVICI, 2008c).

A pirataria, proporcionada pelas insignificantes custos de reprodução, pode levar as firmas à opção estratégica de renunciar a patente, preferindo o segredo a difusão da inovação, o que corresponde a abrir mão das externalidades positivas de rede típicas do mercado. O desenvolvimento de novas modalidades de direitos de propriedade, mais relacionado com processos que com produtos, criam novas modalidades de barreira a entrada. Na medida em que os processos tecnológicos que novas entrantes querem implementar contêm componentes protegidos, sua entrada é impedida (HERSCOVICI, 2008c). O poder de mercado de uma empresa passa a ser influenciada pela sua quantidade de patentes relacionadas com processos, de modo que a concorrência se orienta pela capacidade de gerenciamento dessas barreiras e não pelos mecanismos tradicionais de mercado.

Uma vez que o sistema de direito de propriedade intelectual é, por natureza, pouco eficiente, ocorrem vários comportamentos oportunistas e o desenvolvimento de estratégias de desvio das externalidades de rede. A internalização das externalidade, entendida como a apropriação ou absorção por um agente da totalidade dos resultados gerados pela sua atuação (LÉVÊQUE apud HERSCOVICI, 2008a), passa a ser a orientação da lógica econômica, havendo diferentes possibilidades, conforme exposto na tabela 5.1 do item 5.1. O funcionamento do mercado não pode mais ser adequadamente explicado pelos conceitos tradicionais de concorrência em preços (HERSCOVICI, 2008c).

Não obstante essa complexidade, cujos desdobramentos formam um rico e importante campo de estudo, acreditamos que nossas formulações contribuem para compreender melhor o funcionamento das indústrias de rede, em especial a forma como as regras de interconexão e remuneração podem influenciar a geração de externalidades de demanda em mercados mais tradicionais, além do efeito assimétrico que os custos de transferência podem provocar nessas estruturas.
6. REFERÊNCIAS

___________(2008c). Direitos de Propriedade intelectual, novas formas concorrenciais e externalidades de redes: uma análise a partir da contribuição de Williamson. Rio de janeiro: UFRJ (Série Seminários de Pesquisa/IE/UFRJ).

