Use este identificador para citar ou linkar para este item: http://repositorio.ufes.br/handle/10/4118
Título: Projeto de controladores não lineares para voo autônomo de veículos aéreos de pás rotativas
Título(s) alternativo(s): Diseño de controladores no lineales para vuelo autónomo de vehículos aéreos de palas rotativas
Autor(es): Brandão, Alexandre Santos
Orientador: Sarcinelli Filho, Mario
Carelli, Ricardo
Data do documento: 3-Abr-2013
Editor: Universidade Federal do Espírito Santo
Resumo: É proposta a análise e a implementação de um sistema de controle coordenado capaz de guiar um veículo aéreo não tripulado (no caso, um helicóptero miniatura elétrico com controle remoto sem fio) para que o mesmo siga um veículo terrestre autônomo. O veículo aéreo será dotado de uma câmera com sistema de transmissão de imagens sem fio, para permitir o uso de técnicas de visão artificial conjugadas com algoritmos não lineares de controle servo-visual. O objetivo de tal sistema de controle coordenado, num primeiro momento, é a inspeção de áreas agriculturáveis.
This Ph.D. Thesis proposes nonlinear controllers to guide rotary-wing unmanned aerial vehicles (UAV) to accomplish tasks of positioning, trajectory tracking and path following in the 3D space. Two cases are addressed: the UAV is navigating alone or in cooperation with an unmanned ground vehicle (UGV). Initially the dynamic model of the rotorcraft is presented, obtained by using the Euler-Lagrange formulation and the Newton-Euler formulation as well. In addition, it is presented the representation of a UAV (helicopter or quadrotor) focusing on the underactuated characteristic of the model developed for the aircraft (the variables to be controlled are more than the control signals available). Considering the flight missions themselves, as a first step some restrictions of movement are applied to the aircraft, such that its movement become restricted to the Z axis and, in the sequel, to the XZ and Y Z planes, referenced to the inertial frame. For such cases, PVTOL (Planar Vertical Takeoff and Landing) controllers capable of guiding the aircraft in taking-off, hovering and landing are proposed. The stability of the control system implemented using such controllers, in Lyapunov’s sense, is demonstrated, and the controllers are validated through simulated and experimental results. In the sequel, the flight restrictions are relaxed, and the UAV becomes able to fly in the 3D space. At this point, a important contribution of this work is the proposal of a nonlinear controller based on partial feedback linearization, considering the high coupling between the active/actuated and passive/nonactuated parts of the underactuated system. Simulated and experimental results validate the proposed controller to be used in the classical classes of movement control in Robotics. Following, it is presented a proposal of a switching scheme associated to the PVTOL controllers previously proposed, so that it becomes possible to use simpler controllers to guide the aircraft in a 3D flight mission. Finally, this Thesis also presents a control scheme to guide the navigation of a UAV in coordination with a UGV (or a group of UGVs). The leader-follower control strategy is adopted, to allow the UAV to track the UGV, which is labeled the leader of the formation. Notice that the controllers adopted for guiding the UAV and the UGV work in a completely independent way, with the leader-follower approach being an upper layer responsible for coordinating the poses of the two vehicles. The stability of the control system using such controller is proven, using Lyapunov’s theory, and simulated and experimental results also shown validate the proposed control scheme.
Esta tesis doctoral propone controladores no lineales para guiar un vehículo áereo no tripulado (VANT) de palas rotativas en misiones de posicionamiento, seguimiento de caminos y rastreo de trayectorias en el espacio cartesiano 3D. Se consideran dos casos: el VANT est´a navegando solo o bien en cooperaci´on con un veh´ıculo terrestre no tripulado (VTNT). Inicialmente se presenta el modelo din´amico del VANT, utilizando las formulaciones de Euler-Lagrange y Newton-Euler. Adem´as, el modelo de un VANT (helic´optero o cuatrimotor) es representado destacando su caracter´ıstica de sistema subactuado (m´as variables a controlar que entradas de control). Considerando las misiones de vuelo, en un primer paso se aplican algunas restricciones de movimiento al vehículo de modo que su navegación se restrinja al eje Z. A continuación, se relajan algunas restricciones y la navegación se hace en los planes XZ e Y Z, con referencia en el sistema inercial. En estos casos, se proponen controladores PVTOL (Planar Vertical Takeoff and Landing) capaces de guiar la aeronave en las tareas de despegue, hovering y aterrizaje. La estabilidad del sistema de control implementado es demostrada seg´un la teor´ıa de Lyapunov. Los controladores son validados por simulaci´on y experimentaci´on. A continuaci´on se relajan completamente las restricciones de movimiento y se consideran vuelos tridimensionales. En este punto, una importante contribuci´on del trabajo es la propuesta de un controlador no lineal basado en linealizaci´on por retroalimentaci´on parcial, considerando el elevado acoplamiento entre las partes activas/actuadas y las pasivas/no actuadas del sistema. Los resultados simulados y experimentales validan el controlador propuesto para ser utilizado en las estrategias cl´asicas de control de movimiento en Rob´otica. A continuaci´on se presenta una propuesta de un esquema de control conmutado utilizando controladores PVTOL previamente dise˜nados. El abordaje busca utilizar controladores m´as simples para guiar una aeronave en misiones de vuelo 3D. Su validaci´on es obtenida por pruebas experimentales. Finalmente, esta Tesis presenta un esquema de control para guiar la navegaci´on de un VANT en coordinaci´on con un VTNT (o grupo de VTNTs). Se adopta la estrategia l´ıder-seguidor y el objetivo de control es hacer que el VANT siga al VTNT, denominado el l´ıder de la formaci´on. Los controladores adoptados para guiar el VANT y el VTNT son complemente independientes, sin embargo una estructura de control superior es responsable por determinar la postura de los robots en una misi´on. La estabilidad del sistema de control se demuestra usando la teoría de Lyapunov, y resultados de simulación y experimentales validan el esquema de control.
URI: http://repositorio.ufes.br/handle/10/4118
Aparece nas coleções:PPGEE - Teses de doutorado

Arquivos associados a este item:
Arquivo TamanhoFormato 
tese_2751_TeseDoutoradoAlexandreSantosBrandao.pdf8.33 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.