Use este identificador para citar ou linkar para este item: http://repositorio.ufes.br/handle/10/7502
Título: Semigrupos e o teorema de Gorenstein para singularidades de curvas algébricas planas
Autor(es): Lannes, Andréa Maria Silva
Orientador: Bayer, Valmecir Antonio dos Santos
Data do documento: 8-Nov-2013
Editor: Universidade Federal do Espírito Santo
Resumo: O objetivo central desta dissertação é apresentar o Teorema de Gorenstein para singularidades de curvas algébricas planas. Consideramos os dois casos: primeiramente o caso local onde a singularidade da curva tem apenas um ramo e depois o caso em que a singularidade tem vários ramos. O caso local é quando a equação local é dada por uma série irredutível em k[[X; Y ]] e o caso semi-local e quando a equação local e dada por um produto de séries irredutíveis não associadas duas a duas. Uma equação local dada por uma tal série de potências f é chamada curva plana algebróide. Associados a uma curva plana algebróide estão o seu anel local O = O(f), o fecho inteiro ~O de O em seu anel total de frações e o ideal condutor de ~O em O. Podemos dizer que estes dados codi-cam as informações algébrico/geométricas da curva algebróide (f). O Teorema de Gorenstein, demonstrado por D. Gorenstein em [Go] a-rma que em ambos os casos (local e semi-local), a codimensão (como k-espacos vetoriais) do ideal condutor no anel O e igual a codimensão do anel O em ~O. Isto nos fornece uma certa simetria que e reetida nosemigrupo associado a curva algebróide (f). Assim estudamos também esta simetria de semigrupos dos naturais e a relacionamos com a simetria do anel O no caso local.
The main goal of this dissertation is to present the Gorenstein Theorem for plane curve singularities. We consider two cases: firstly the local case when the singularity has only one branch and after the semilocal case when the singularity has several branches. In the local case the local equation is given by an irreducible series of k[[X, Y ]] and in the semilocal case it is given by a finite product of irreducible series wich are not pairwise associated. A local equation given by such a power series f is called an algebroid plane curve. The following are objects associated to an algebroid plane curve: The local ring O = O(f), its integral closure O˜ of O in its full ring of fractions and the conductor ideal of O˜ in O. We may say that these data encode all the algebraic / geometric informations of the algebroid plane curve (f). Gorenstein Theorem, that was proved in [Go] by D. Gorenstein states that, in both cases (local or semi-local), the codimension (as k-vector spaces) of the conductor ideal in the ring O is equal to the codimension of the ring O in the ring O˜. This provides us with a certain symmetry which is reflected in the semigroup associated to the algebroid plane curve (f). Thus, we also study the symmetry of semigroups of the natural numbers and relate them to the symmetry of the ring O in the local case.
URI: http://repositorio.ufes.br/handle/10/7502
Aparece nas coleções:PPGMAT - Dissertações de mestrado

Arquivos associados a este item:
Arquivo TamanhoFormato 
tese_6989_versão corrigida fim 04.12 (1)20141126-135619.pdf351.43 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.